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Abstract 

Thin shells are highly sensitive to geometric imperfections, and the presence of imperfections 

reduces their load carrying capacities significantly. Consequently, thin stiffened cylindrical shells 

are designed conservatively based on the knockdown factor approach that accommodates the 

uncertainties associated with the underlying imperfections. Recent studies show that methods 

based on the stability landscape of thin cylinders obtained by probing axially compressed shells 

in the radially inward direction can predict the capacity of thin shells without measuring the 

underline imperfections. So far, however, these methods are applied only to thin cylindrical 

shells without stiffeners. Many outstanding issues must be resolved before applying these 

methods on thin stiffened cylindrical shells, e.g., the role of stiffeners, the interaction among 

stiffeners, probing location and imperfections, and the identification of the probing location that 

yields an accurate capacity prediction. In this study, a stability landscape-based nondestructive 

procedure is developed for the capacity prediction of imperfect stiffened cylindrical shells by 

resolving the outstanding issues.  Overall, this study reveals three important aspects of the 

stability landscape-based nondestructive prediction procedure for stiffened cylinders: 1) probing 

can be used to predict the capacity of imperfect stiffened cylindrical shells without measuring the 

imperfections, and 2) the probing location plays a crucial role in the accuracy of the prediction, 

and 3) stability landscape of stiffened cylindrical shells is significantly different than that of 

unstiffened cylindrical shells. 

 

 

1. Introduction 

The search for high-fidelity estimates of the buckling capacity of thin shells, particularly of 

cylindrical and spherical thin shells, has long been a cherished goal of the mechanics’ 

community. Thin shells are highly sensitive to imperfections (Koiter 1945), and thus their 

buckling capacity depends on the shape and the size of each imperfection, as well as their 

topological arrangement. As a result, we need prior information about the imperfections to make 

accurate buckling capacity predictions. Information about the shell’s underlying imperfections is 

usually unknown and thus their buckling capacity.  Due to the lack of an inexpensive high-

fidelity prediction method, thin shells are designed by the conservative knockdown factor 
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method, which is an empirical method developed by NASA (NASA, 1965) in the late sixties 

after extensive experimental programs. Using the conservative knockdown factor method, we 

can design thin shells safely; however, the full engineering potential of thin shells is not being 

exploited. 

 

Recently, a promising new framework based on the probing of axially compressed shells has 

emerged for the prediction of the buckling capacity of thin shells without complete knowledge of 

the shell’s underlying imperfections (Thompson 2015, Thompson et al. 2016, Thompson et al. 

2017, Hutchinson et al. 2017, Marthelot et al. 2017, Virot et al. 2017, Hutchinson et al. 2018, 

Fan 2019, Abramian et al. 2020, Yadav et al. 2021, Nicholas et al. 2021). Yadav et al. (2021) 

have suggested a non-destructive procedure for the evaluation of thin cylindrical shells' axial 

buckling capacity based on the stability landscape. This procedure consists of three steps: 1) 

shells are put under axial compression Fa, 2) these axially compressed shells are probed in the 

radial direction at the location of a pre-existing imperfection, and 3) the peak probe 

force Fp
max and the corresponding axial compression Fa are recorded and used to predict the 

buckling axial capacity. Ankalhope and Jose (2021) have proposed that the right location for the 

probing is the least resistant path, and that location can be found by probing at multiple locations. 

Further, Cuccia et al. (2023) have proposed the right location of probing for the accurate 

predictions.   

 

All the mentioned studies in the previous paragraph dealt with thin shells without stiffeners, and 

thus cannot be extrapolated to thin shells with stiffeners. In almost all engineering applications, 

thin shells are used with stiffeners, and it demands a separate study to evaluate the viability of 

probing-based prediction methods for thin shells with stiffeners. In this study, we 

computationally (FEM) investigated the stability landscape of thin stiffened cylindrical shells. 

First, the buckling of a stiffened cylinder is discussed and compared with the unstiffened 

cylinder. After that, the probing response of the stiffened cylinder is examined. Finally, the paper 

is concluded by noticing the main findings of this study. 

 

2. Description of the geometry and finite element model 

For this study, a stiffened cylinder is analyzed computationally using the FEA package 

ABAQUS. The cylinder represents a mini Coke Can (7.5 fl oz), made of aluminum. The mini 

Coke Can is modified to make them stiffened along the axial direction. Further, we simplified 

our modeling assuming the cross-sections of cans are circular throughout the length. The 

dimensions and material properties of the cylinder are given in Table 1. A total of 16 stiffeners 

along the axial directions are attached to the cylinder. The depth d is 10t and the width b is 5t of 

the stiffeners, where t is the thickness of the cylinder: 

 
Table 1: Dimensions and the material properties of the can 

R L R/t E   

(mm) (mm)  (Gpa)  

28.6 107 286  68.95 0.3 

 

For the meshing, around 66048 four-node reduced integration shell (S4R) elements are created, 

utilizing four integration points along the thickness of each element. Fig. 1 demonstrates the 

Finite Element Modeling and boundary conditions. For compressing the cylinder to a prescribed 

axial compression, two nodes are defined at the center of the top and bottom cross-sections of the 
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cylinder; we call them center nodes. Rigid links are created to connect the nodes at the end of the 

cylinder to the respective center nodes to constrain the displacements U1, U2, and U3, and 

rotations UR1, UR2, and UR3 of the nodes at the end from moving and rotating with respect to the 

center nodes. Using these constraints one end of the cylinder is clamped by fixing the central 

node at Z = 0. At the other end (Z = L) a clamped boundary condition is enforced, but the end of 

the cylinder is loaded by applying an axial displacement U3 = -Δ. 

     

 
  

     

 

 

 

 

 

                                                                                                                       

   

    

   

 

Figure 1: Finite Element Model of the axially stiffened cylinder along with boundary conditions and cross-section of

the cylinder. In total 16 stiffeners are used along the axial direction.

3. Result and Discussion

In  this  section  first,  we  discuss  how  a  perfect  axially  stiffened  cylinder  buckled  under  axial 
compression.  Then,  the  probing  response  of  the  stiffened cylinder  is  discussed  along  with  the

stability landscape.

3.1 Bucking capacity of the perfect stiffened cylinder
The buckling capacity of the perfect stiffened cylinder is found using ABAQUS. The arch-length 
based  Riks  method  (Riks  1979)  is  applied  for  GMNA  (Geometric  and  Material  Nonlinear 
Analysis) to assess the axial strength of the cylinder using S4R elements as described in Section 
2. The  cylinder  is  loaded  by  applying  an  axial  displacement U3  = -Δ till  the  cylinder  buckled. 
The cylinder buckled at 3867 N axial load, and the displacement at the buckling is 0.239544 mm. 
The  scaled  bucked  cylinder  is  shown  in  Figure  2  (a),  and  Figure  2  (b)  shows  the  load- 
displacement  plot.  The  capacity  of  the  stiffened  cylinder  is  substantially  more  than  that  of  the 
cylinder  without  stiffeners.  The  numerically  obtained  capacity  (using  FEA)  of  the  cylinder 
without  stiffeners  is 2584.7  N. Further,  the  axial displacement  of  the  stiffened  cylinder  is 
substantially less than that of the cylinder without stiffeners. These observations are excepted as 
the  stiffeners  increase  the  capacity  and  stiffness.  Figure  3  (a)  shows  the  enlarged  view  of  the 
stiffeners at the bucking, and Figure 3 (b) shows the scaled deformed shape of the cylinder after 
buckling. From Figure 3, it is clear that the stiffened cylinder is inheriting the behavior of both 
the  beam  and  shell.  The beam  behavior  is  manifest  at  the  buckling  of  the cylinder  as  shown  in 
Figure 3 (a). Once bucking occurred, the stiffeners lose their strength and the shell behavior start 
manifesting in post-buckling regions as shown in Figure 3 (a). These observations reinforced that
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the probing of the unstiffened cylinder cannot be extrapolated to a stiffened cylinder, and a 

separate study is needed to understand the probing behavior of stiffened cylinder which is the 

part of next section. 

     

 
Figure 2: (a) Bucked stiffened cylinder (scaled) under axial compression. The buckling capacity is 3867 N axial 

load, and the displacement at the buckling is 0.239544 mm. (b) Load-displacement plots of the stiffened cylinder. 

 

 
   

 

 

 

 

   

 

   

Figure 3: (a) Enlarged view of the stiffeners at the bucking, and (b) scaled deformed shape of the cylinder after

buckling.

3.2 Probing and stability landscape of the perfect stiffened cylinder
To evaluate the viability of probing-based prediction methods for stiffened cylindrical shells, we 
need to understand how stiffened cylindrical shells respond to the probing. For that, we start with 
the perfect stiffened cylindrical shells. The perfect stiffened cylindrical shell is first compressed 
under four different axial compressions 2000 N, 2500 N, 3300 N, and 3400 N, and then probing 
is  done  at  the  middle of  the  cylinder  and  the  top  of  a  stiffener  as  shown  in  Figure  4.  Figure  5, 
shows the response of the compressed stiffened cylindrical shells. Many significant observations 
can  be  made  from  Figure  5.  For  higher  axial  compressions,  e.g., Fa  =  2500  N,  3300 
N, and 3400N, the  response  of  probing  of  the  stiffened  cylinder  is  similar  to  that  of  an 
unstiffened perfect cylinder. Initially, the probing force is increasing with probing displacement 
and  reaches  a  peak,  and  then  reduces  as  probing  displacement  is  increasing.  This  is  the  typical
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characteristic of probing unstiffened cylindrical shells. However, for the small axial 

compression, the response is different than that of the unstiffened cylinder. For small 

imperfections, initially, the probing force is increasing with probing displacement and reaches a 

peak, and then the stiffeners buckled as shown in Figure 5 (a). After buckling the stiffener, the 

cylinder regains strength as shown in Figure 5 (b). This is due to the shell behavior starts playing 

a role after the buckling of stiffeners. These observations reveal that the probing response of a 

stiffened cylinder is different and more complex than that of unstiffened cylinders. The 

complexity comes from the interaction between the stiffeners and the thin shells.      

 

 
Figure 4: (a) Probing of axially compressed stiffened cylinder. The probing is done at the middle of cylinder and at 

the top of stiffeners. 

 

 

4. Conclusions 

This study reveals that the probing response of stiffened cylinders is significantly different than 

previous studies conducted on unstiffened cylinders. The complex interaction between stiffeners 

and shells is the cause of this difference. As a result, further research is necessary to develop a 

non-destructive technique for predicting the buckling capacity of stiffened thin cylindrical shells. 

This study is preliminary and has several limitations, such as only considering perfect stiffened 

cylinders and only probing at the middle and top of stiffeners. Nevertheless, the results are 

promising and further studies will be conducted to improve the understanding of the probing 

response of stiffened cylinders and develop probing-based prediction methods. 
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Figure 5:  Load-displacement curve of probing of axially compressed stiffened cylinder for axial compression Fa = 

2000 N (a), 2500 N (b), 3300 N (c), 3400 N (d). 
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