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Abstract
Locally slender cross-section members, such as cold-formed steel Cee and Zee sections, are sus- 
ceptible to significant twisting and high warping torsion stresses. Torsion considerations are com- 
plicated by whether it is derived as a first-order effect from loading or a second-order effect from 
instability. The current design for combined bending and torsion interaction has some limitations, 
including only considering the first yield in torsion and ignoring the cross-section slenderness in 
torsion. Previous work has derived a simple uniform equation to predict the bimoment capacity and 
two bimoment strength curves for local and distortional buckling under torsion only. This work is 
extended to consider combined bending and torsion for locally slender cross-sections. A paramet- 
ric study is conducted to improve the interaction prediction of combined bending and torsion for a 
range of torsional slenderness. Shell finite element analysis of lipped Cee and Zee section mem- 
bers with combined bending and torsion were created using a validated model. A practical range 
of cross-sections and bracing conditions were investigated with various ratios of applied torsion 
and bending. Shell finite element buckling and collapse analyses were performed to determine 
the critical and ultimate moments and bimoments. It was found that the current AISI standard is 
conservative under most scenarios. Updated torsion-bending interaction equations incorporating 
bimoment and bending moment are proposed. The interaction equations are dependent on the
cross-section, the direction of the applied torsion, and the bracing condition.

1. Introduction
Cold-formed steel (CFS) is a common construction material in which steel sheets are shaped into 
structural members by the cold-working processes and are widely used in many structural and 
non-structural applications. Among different types of CFS shapes, the thin-walled open sections
(e.g., Cee and Zee) are the most common for structural framing. The thin-walled geometries are 
beneficial to reducing the self-weight, hence lower transportation, material costs, and labor costs. 
However, due to the open thin-walled geometries, CFS sections have a low torsional stiffness and
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can be vulnerable to even a small amount of torsional load. Therefore, understanding the internal
torsional forces for CFS members is important to correctly conduct the member and structure
design (Glauz, 2020).

A member subjected to torsional loads may develop both shear stresses and longitudinal stresses.
For typical open cross sections, the most critical internal force is the bimoment (B) caused by the
longitudinal stresses. However, in the literature there is limited guidance on methods to calculate
the bimoment strength and a few design standards provide only indirect methods to consider the
effects resulting from torsional stresses. Section H4 of AISI S100 (2020) states that for members
under combined bending and torsion, the flexural strength should be reduced by a reduction factor
R, which is given as Eq. 1:

R =
fbending,max

fbending + ftorsion
(1)

where fbending,max is the bending stress at extreme fiber, fbending is the bending stress at location in
cross-section where combined bending and torsion stress is maximum, and ftorsion is the torsional
warping stress at location in cross-section where combined bending and torsion stress is maximum.

Section 6.1.6 of Eurocode 3 Part 1-3 (2006) stipulates the upper bound of the total longitudinal
stress and the total shear stress for members under combined bending and torsion as shown in Eq.
2:

√
σ2
tot,Ed + 3τ 2tot,Ed ≤ 1.1

fya
γMO

(2)

where σtot,Ed is the design total direct stress, calculated on the relevant effective cross-section,
τtot,Ed is the design total shear stress, calculated on the gross cross-section, fya is the steel average
yield strength, and γMO is a safety factor.

Section 5.3.2 of GB 50018 (2002, Chinese version) stipulates the upper bound of the sum of
normalized bending moment and bimoment as shown in Eq. 3, which is transformed into Eq. 4 by
Wan et al. (2021):

σ =
M

Wenx

+
B

Wω

≤ f (3)

M

Mb

+
B

By

≤ 1 (4)

where Mb is the bending capacity under bending moment only and By is the bimoment capacity
under torsion only.
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These standards consider the reduction for yield moment and bimoment, while member inelastic 
behaviors are not sufficiently considered.

The authors carried out a numerical study (Xia et al., 2022) to predict the bimoment capacity 
of thin-walled CFS Cee and Zee sections under torsional load. A uniform equation (Glauz and 
Schafer, 2022) consisting various bimoment parameters with only two numerical coefficients was
adopted for the bimoment strength calculation as shown in Eq. 5:

Bcr + aBy
Bn = Bp · (5)

Bcr + bBy

where By is the yield bimoment, Bp is the plastic bimoment, and Bcr is the buckling bimoment. 
The calculation of these bimoment parameters is introduced in the torsion-only study (Xia et al., 
2022). In addition, local buckling (LB) and distortional buckling (DB) controlled cases showed 
substantially different behaviors and two groups of numerical coefficients were provided respec- 
tively, where a = 0.094 and b = 0.230 for LB-controlled cases, a = 0 and b = 1.110 for DB- 
controlled cases.

In this paper, a numerical study is carried out to predict the moment-bimoment interactions of 
thin-walled CFS Cee and Zee sections under combined bending-torsion. A validated finite element 
model (Xia et al., 2022) is updated to adapt the combined bending-torsion load scenario. Various 
eccentricities from the cross-section shear center to the vertical applied loads are considered. In 
addition, both braced and unbraced midspan conditions are investigated. Moment and bimoment 
parameters incorporated in the interaction equations are calculated based on the member length, 
cross section geometry, and simulation results. Simple interaction equations between moment 
and bimoment parameters are provided, where different coefficients are calibrated for unbraced or
braced conditions and Cee or Zee sections, respectively.

2. Finite element model design
The validated Abaqus (2016) finite element model designed in the torsion-only study (Xia et al., 
2022) based on the selected experimental study (Wan, Huang, and Mahendran, 2021) was adapted 
to investigate the behaviors of CFS under combined bending-torsion. Identical cross-section selec- 
tion (Table 1), initial geometric imperfections, model element type, and model mesh size defined 
in the torsion-only study (Xia et al., 2022) were adopted in this study. For the material definition, 
an elastic-perfectly-plastic model for conventional mild steel with a yield strength of 345 MPa (50 
ksi) for Cee sections and 379 MPa (55 ksi) for Zee sections were adopted.

For the applied loads, compared with the torsion-only study (Xia et al., 2022), vertical distributed 
loads p representing the primary bending force were added at each node of the web, while the 
horizontal distributed loads q representing the torsional load effect were applied at all nodes of 
both top and bottom flanges as shown in Figs. 4 and 5. The relationship between total vertical 
load P and the total equivalent transverse load Q was determined by the loading eccentricity from 
the shear center through the relationship Q = P (ds + e)/D0, where e is the eccentricity from 
shear center, ds is the distance between the web center and the shear center, and D0 is the out-
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Table 1: Selected cross-sections for the parametric study.

Cee cross-section
1200S300x971 1000S300x97 800S250x97 600S200x97
1200S300x68 1000S300x68 800S250x68 600S200x68
1200S300x54 1000S300x54 800S250x54 600S200x54

Zee cross-section
12Z325x1052 10Z325x105 8Z275x105 6Z225x105
12Z325x070 10Z325x070 8Z275x070 6Z225x070
12Z325x059 10Z325x059 8Z275x059 6Z225x059

1 The nomenclature of Cee sections can be found in SSMA Product Technical Guide (2015);
2 The nomenclature of Zee sections can be found in AISI Cold-Formed Steel Design Manual (2017).

to-out web depth, as illustrated in Fig. 1. The vertical load on each node p can be calculated by
p = P/[(nL + 1)(nD + 1)], where nL is the number of elements along the member longitudinal
direction and nD is the number of cross-section web elements. The horizontal load on each node
is q = P (e + ds)/[D0(nL + 1)(nB + 1)], where nB is the number of elements of either flange of
the cross-section, and ds is negative for Cee sections and zero for Zee sections.

Figure 1: Transformation of eccentrically load for (a) Zee section and (b) Cee section.

For the boundary conditions, both unbraced and braced midspan conditions were investigated,
where their theoretical moment and bimoment distributions along the member span can be cal-
culated (Glauz, 2020) as shown in Fig. 2, and where the coordinate system is defined in Figs. 4
and 5. For both unbraced and braced cases, the member ends were simply supported, where the
displacements along the Y and Z directions were restrained providing torsionally fixed but warping
free boundary conditions at the ends. For the unbraced case, only the displacement along the X
direction was restrained at midspan. For the braced case, the X and Z direction displacements and
the rotation about the X-axis were restrained at midspan.

For comparison between the unbraced and braced cases, a design of the same torsionally unbraced
length L is helpful, where L = L0 for the unbraced case and L = L0/2 for the braced case, where
L0 is the total member length. Meanwhile, considering the beam length is usually dependent on
the section web depth, the member length was selected as 10D0 for the unbraced case and 20D0

for the braced case. For both cases, up to nine different eccentricities were selected and are shown
in Fig. 3, where B is the flange element flat width. Fig. 4 and 5 provide typical finite element
setup for unbraced and braced cases, respectively.
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Figure 2: Theoretical moment and bimoment distribution along member length for (a) the unbraced condition and (b)
the braced condition.

Figure 3: Selected eccentricities from shear center (location 5, e5) for (a) Cee and (b) Zee sections for the combined
bending-torsion analysis. B is the flange element flat width.

3. Model collapse modes
Significantly different stress distributions at peak applied load for the two loading eccentricity 
direction scenarios (i.e., sign of eccentricity in Fig. 3) were observed for both unbraced Zee and 
Cee sections. Representative longitudinal stress (S11) distributions for unbraced Cee and Zee 
sections for the two eccentricity directions are shown in Figs. 6 and 7, where the most significant 
stress concentrations were observed at the midspan for all cases. Specifically, for Cee sections with 
negative load eccentricity (Fig. 6(a)), high tension on the bottom lip and high compression at the 
top lip were observed. For Cee sections with positive load eccentricity (Fig. 6(b)), high tension at 
the top lip, web, and bottom flange, particularly the web-bottom flange junction, were observed, 
and high compression at the top flange and the upper web were observed. For Zee sections with 
negative load eccentricity (Fig. 7(a)), significant compression was observed at the upper web and 
web-top flange junction, and high tension was observed at the top lip. For the Zee sections with 
positive load eccentricity (Fig. 7(b)), significant tension was observed at the web-bottom flange 
junction and the lower web, while significant compression was found at the bottom lip and top 
flange-top lip junction.

For the braced Cee and Zee sections with both negative and positive applied load eccentricities, 
the general distribution of S11 was similar, where the upper half of the cross-section was overall in
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Figure 4: Typical simulation setup with unbraced midspan for (a) Cee and (b) Zee sections under combined bending- 
torsion loading condition. Yellow arrows are nodal loads and orange cones are displacement fixities.

compression and the lower half was overall in tension. However, the detailed S11 distribution and 
magnitudes were unique for each case. Specifically, comparing the two examples shown in Figs. 
8 and 9, the largest compression was found at web-top flange junction and the largest tension was 
found at web-bottom flange junction for Cee sections with negative load eccentricities (Fig. 8(a));
while for Cee sections with positive load eccentricities (Fig. 8(b)), the largest compression was 
found at the top lip and the largest tension was found at the bottom lip. For the Zee sections, the 
compression at the top lip was most significant and no tension yield was observed when the loading 
was applied at e1 = −B (Fig. 9(a)). When the eccentricity increased, the compression at the upper
half of the section decreased and the tension at the lower half section increased. At e9 = B (Fig. 
9(b)), significant tension was observed at the bottom lip, while no compression beyond yield was 
observed in the upper half of the section. The different behaviors for unbraced and braced Cee and
Zee sections might indicate different moment-bimoment interactions for these cases.

4. Parameter calculation
To develop the interaction between moment and bimoment parameters for the combined bending- 
torsion case, the calculation of the following parameters are required: nominal moment capacity
Mn, the ultimate moment Mu, the nominal bimoment capacity Bn, and the ultimate bimoment Bu.

To calculate Mu and Bu, the peak applied load and/or the nodal longitudinal stress (S11) at peak 
load extracted from the finite element analysis are needed. Two methods were adopted for the 
calculations. The first method directly calculated Mu and Bu based on elastic distribution equations 
using the applied ultimate loads. Mu for unbraced Cee sections is calculated by Eq. 6:
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Figure 5: Typical simulation setup with braced midspan for (a) Cee and (b) Zee sections under combined bending-
torsion loading condition. The right half (not shown) is symmetric with the left half about the midspan. Yellow arrows
are nodal loads, orange cones are displacement fixities, and blue cones are rotation fixities.

Mu =
ωL0

2

8
(6)

where ω is the distributed load along the member length L0, ω = P/L0. For unbraced Zee sections,
the vertical load causes unsymmetric bending stresses at midspan, therefore the bending stresses
were resolved into moments about both major and minor principal axes, M1 and M2. The ultimate
moments M1u and M2u thus were calculated by Eqs. 7 and 8, respectively:

M1u =
ωL0

2 cos θ

8
(7)

M2u =
ωL0

2 sin θ

8
(8)

where θ is the acute angle between the major principal axis and the x-x geometric axis.

The ultimate bimoment Bu was calculated by Eq. 9 for both unbraced Cee and Zee sections:

Bu =
Pea2

L
·
[
sinh

(
L

2a

)
· tanh

(
L

2a

)
+ 1− cosh

(
L

2a

)]
(9)
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Figure 6: Representative S11 distribution of unbraced Cee section (800S250x97) with (a) e3 = −B/2 and (b) e7 =
+B/2 at ultimate load.

where L is the unbraced length and equals the total member length, and a is a constant calculated
by Eq. 10:

a =

√
ECw

GJ
(10)

where Cw is torsional warping constant of cross-section, G is the shear modulus, G = E/(2+2υ),
and J is the Saint-Venant torsion constant.

For the braced scenario of both Cee and Zee sections, the ultimate moment Mu was calculated by
Eq. 6 and the ultimate bimoment Bu was calculated by Eq. 11:

Bu = −Pea2

L
·

cosh(
L

a

)
− 1 +

cosh
(
L
a

)
− 1 + L2

2a2
− L

a
· sinh

(
L
a

)
L
a
· cosh

(
L
a

)
− sinh

(
L
a

)
 · sinh

(
L

a

) (11)

where L is the unbraced length which is equal to half of the total member length, and a is calculated
by Eq. 10.

The second method for Mu and Bu calculations is a stress-based method and it directly uses the
nodal longitudinal stresses S11 of midspan nodes at peak applied load following Eq. 12, 13, and
14:
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Figure 7: Representative S11 distribution of unbraced Zee section (6Z225x105) with (a) e1 = −B and (b) e9 = +B
at ultimate load.

Mxu =
∫

σydA (12)

Myu =
∫
σxdA (13)

Bu =
∫
σwndA (14)

where the subscript x and y represent x-x and y-y geometric axes. In addition, for the unbraced
Cee section, Mu = Mxu; for the unbraced Zee section, the ultimate moment M1u and M2u are
calculated by Eq. 15 and 16:

M1u = +Mxu cos θ +Myu sin θ (15)

M2u = −Mxu sin θ +Myu cos θ (16)

For both braced Cee and Zee sections, Mu = Mxu. The nominal moment capacity Mn (M1n and
M2n for unbraced Zee sections) was calculated following Ch. F3 and F4 of AISI S100 (2020) for
LB- and DB-controlled cases respectively. The bimoment capacity Bn was calculated by Eq. 5
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Figure 8: Representative S11 distribution of braced Cee section (800S250x68) with (a) e3 = −B/2 and (b) e7 =
+B/2 at ultimate load.

Figure 9: Representative S11 distribution of braced Zee section (6Z225x070) with (a) e1 = −B and (b) e9 = +B at
ultimate load.

as described in the torsion-only study (Xia et al., 2022) with proposed coefficients for LB- and
DB-controlled cases respectively.

5. Bending-torsion interaction
Based on the moment and bimoment parameters calculated in Sec. 4., the bending-torsion in- 
teraction relationship for unbraced and braced cases were developed separately. The relationship 
between Bu/Bn and Mu/Mn for unbraced Cee sections is shown in Fig. 10. The figure shows that 
the interaction is dependent on the direction of the eccentricity. For the negative eccentricities, the 
bimoments are positive following the CUFSM (2010) sign convention (the same hereinafter) and
Mu/Mn + Bu/Bn is between 0.8 and 1.0. For the positive eccentricities, the bimoments are neg- 
ative and are generally above Mu/Mn − Bu/Bn = 1.3. The relationship between Bu/Bn versus
M1u/M1n versus M2u/M2n for unbraced Zee sections is shown Fig. 11. Unbraced Zee sections 
with both positive and negative eccentricities show substantially conservative interaction behav- 
iors, where all the data are strictly above M1u/M1n + M2u/M2n + Bu/Bn = 1.3 for the cases
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with negative eccentricities and below M1u/M1n +M2u/M2n − Bu/Bn = 1.3 for the cases with
positive eccentricities. For both unbraced Cee and Zee sections, the positive eccentricity cases are
more conservative than the negative eccentricity cases.

Figure 10: Interaction between Bu/Bn and Mu/Mn for unbraced Cee sections. Different colors represent different
eccentricities as shown in Fig. 3(a). Solid scatters represent stress-based method and hollow ones represent equation-
based method.

Figure 11: Interaction among Bu/Bn versus M1u/M1n versus M2u/M2n for unbraced Zee sections from two per-
spectives. Different colors represent different eccentricities as shown in Fig. 3(b). Solid scatters represent stress-
based method and hollow ones represent equation-based method. The reference planes of M1u/M1n +M2u/M2n ±
Bu/Bn = 1.0 and M1u/M1n +M2u/M2n ± Bu/Bn = 1.3 are represented by the orange and yellow shaded areas,
respectively.

For the braced cases, the Cee and Zee sections show similar interaction behaviors between Bu/Bn

versus Mu/Mn as shown in Fig. 12. While significantly different behaviors are observed among
positive and negative eccentricity cases. The negative eccentricity cases show negative bimoments
and the data is generally above Mu/Mn − Bu/Bn = 1. In contrast, the positive eccentricity
cases show positive bimoments and the data is more conservative and generally above Mu/Mn +
Bu/Bn = 1.2.
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Figure 12: Interaction between Bu/Bn and Mu/Mn for braced (a) Cee and (b) Zee sections. Different colors represent 
different eccentricities as shown in Fig. 3. Solid scatters represent stress-based method and hollow ones represent
equation-based method.

6. Conclusions
The moment-bimoment interaction equations have been developed in this study. A set of moment 
and bimoment parameters, including nominal moment capacity Mn, ultimate moment Mu, nominal 
bimoment capacity Bn, and ultimate bimoment Bu, incorporated in the interaction equation were 
calculated using a validated finite element model for CFS Cee and Zee sections under combined 
bending-torsion considering buckling and/or inelastic behaviors. A wide range of practical cross- 
sections, loading eccentricities, and two different bracing conditions at midspan were investigated. 
The results indicated that both the direction of the loading eccentricity and the midspan bracing 
have significant effects on the member behaviors and interaction equation prediction. The direction 
of the loading eccentricity and the midspan bracing determine the sign of Bu, where positive Bu

for unbraced cases and negative Bu for braced cases are observed in the negative load eccentricity 
scenarios, and reversed signs are observed in the positive eccentricity scenarios. Furthermore, the
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moment-bimoment interactions for most cases are generally above Mu/Mn+ | Bu | /Bn = 1.2 or
1.3 (or M1u/M1n + M2u/M2n + Bu/Bn = 1.2 for unbraced Zee sections), indicating the behaviors 
are conservative compared with design standards. The exceptions are the unbraced Cee section
and braced Zee section cases loaded with negative eccentricities, where Mu/Mn+ | Bu | /Bn

is between 0.8 and 1.0. This study indicates the need to revise moment-bimoment predictions in
applicable CFS design specifications.
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