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Abstract 

The adoption of cold-formed steel (CFS) in structural systems has risen significantly in recent 

years due to various favourable features such as cost-effectiveness, speed of construction, and 

lightweight structures. As a result, CFS members are suitable for modular construction. Beams 

are primary structural members responsible for transferring loads from the floors to the adjacent 

columns. Built-up I-sections composed of two channel sections are preferred as flexural 

members owing to their higher torsional rigidity and other stability characteristics over mono-

channel sections. The webs of CFS I-beams are vulnerable to web crippling deformation under 

the influence of localized loading due to their higher sectional slenderness. The past research on 

web crippling studies has mainly focused on CFS mono-sectional profiles. However, the web 

crippling instability response of a single CFS channel section may differ from that of an open 

built-up beam composed of two such channels. Limited findings on CFS built-up sections have 

been reported so far. Hence, the current web crippling design rules may not be adequate for CFS 

open built-up beams across a wide range of parameters and need to be explored in detail. The 

current study focuses on the web crippling response of CFS built-up I-beams composed of two 

plain channel sections fastened through the web at various distinct points across the cross-section 

and longitudinally. First, a numerical model was developed in ABAQUS, and validated against 

the relevant test data available in the literature. The validated model was used to carry out an 

extensive parametric study by varying critical parameters used in the web crippling design 

expression of the North American Specification (AISI S100). The effect of all these critical 

parameters on the web crippling behavoir has been explored. Lastly, the web crippling design 

strengths were determined using the current North American Specification (AISI S100) and 

Eurocode (EN1993-1-3). These web crippling design strengths were compared against the 

numerical web crippling strengths to assess the accuracy of the current design codes. Both these 

design codes showed inconsistency in the predictions, as they over-predicted the web crippling 

strengths in some cases and under-predicted in others. This clearly reflects the need for more 

studies on such built-up beams to bring out accurate design rules for the same. 

 

 

 

 
1 Marie Curie Fellow in Steel Structures, University of Sheffield, <dar.adil@sheffield.ac.uk> 
2 Postdoctoral Research Fellow, Istanbul Technical University, <ghowsi@itu.edu.tr> 
3 Professor, Government College of Engineering Salem, <anbarasu@gcesalem.edu.in> 
4 Professor, Istanbul Technical University, <celikoguz@itu.edu.tr > 
5 Professor, University of Sheffield, <i.hajirasouliha@sheffield.ac.uk > 



 2 

1. Introduction 

In the recent decade, cold-formed steel (CFS) sections have been widely adopted in constructing 

framed systems, which are extensively used in low-rise to mid-rise structures. Key structural 

features in CFS members, like low self-weight, simple fabrication, easy handling/transportation 

result in faster construction, cutting the construction time significantly. This encourages the 

builders to use CFS members frequently. Since CFS structures only require assembling and 

connecting different structural elements at the site, they also offer great flexibility in constructing 

temporary structures. However, due to sectional thinness, CFS members are prone to different 

modes of buckling instabilities, restricting their application to limited adoption. This motivated 

steel researchers to work towards improving the buckling resistance of CFS sections. As a result, 

many research studies have brought out improved and cost-effective solutions for enhancing the 

buckling performance of different beams cross-sections (Dar et al. 2015;2018;2019a-c;2020a-

b;2021;2022; Kumar& Sahoo 2016; Bian et al. 2016; Ye et al. 2019; Zhao et al. 2019; Anbarasu 

2019; Selvaraj & Madhavan 3019;2021; Meza et al. 2020; Obst et al. 2022;), column cross-

sections (Maderia et al. 2015; Leng et al. 2014; Li et al. 2016; Landesmann et al. 2016; Camotim 

et al. 2018; Anbarasu & Ashraf 2019; Rasmussen et al. 2020; Kechidi et al. 2020; Zhao et al.. 

2022; Sippel et al. 2022; Fang et al. 2022), and shear-walls (Derveni et al. 2020; Zhang et al. 

2021; Joorabchian et al. 2021; Liu et al. 2022; Yilmaz et al. 2023; ). Beams are key structural 

members and must function adequately to transfer loads from the floors to the adjacent columns. 

Built-up I-sections comprising of two web-connected channel sections are preferred as flexural 

members primarily due to their superior torsional stiffness and other stability features over 

mono-channel sections. The thin webs of CFS I-beams are slender, therefore, susceptible to web 

crippling failure under the impact of localized loading. The past research on web crippling 

studies has mainly focused on CFS channel sections. 

 

2. CFS channel sections  

In the initial web-crippling studies on CFS channel sections (Hetrakul & Yu 1978; Young & 

Hancock 1998; Rhodes & Nash 1998; Bhakta et al. 1992; Gerges & Schuster; Lagan et al.; 

Beshara & Schuster), critical parameters like web slenderness, corner radius, bearing length, 

yield strength of steel, flange fixity (fastened/unfastened) and type of loading were varied. These 

findings resulted in developing various empirical design expressions for obtaining the web 

crippling strength for the previous design codes (AISI 1996;S136; AS/NZS 4600; BS 5950-5) 

and subsequently in improving the various coefficients for better predictions. Post 2000, 

significant research investigations on the web crippling response of CFS channels sections were 

carried out by expanding the critical parameters over a wider range (Young & Hancock 

2003;2004; Ren et al. 2006; Duarte & Silverstre 2013; Natario et al. 2014a-b; Gunalan & 

Mahendran 2019; Janathanan et al. 2019; Macdonald et al.2011; Macdonald & Heiyantuduwa 

2012; Chen et al. 2015; Sundarajah et al. 2017;2018; Heukens et al. 2018; Keerthan et al. 2014; 

Keerthan & Mahendran 2016; Steau et al. 2015;2016;2017). These studies were instrumental in 

developing design rules for the current codes (AISI S100; EC3), theoretical design models and 

direct strength method based design equations. Apart from analysing plain and lipped channel 

sections, the recent studies also explored the web crippling behavior of improved channel 

sections like hollow flanged channel sections (Keerthan et al. a-b; Steau et al. a-c) and 

intermittently web stiffened channel sections with inclined lips (Sundararajah et al. a-b). 

Furthermore, the influence of web-openings on the web crippling resistance of CFS channel 

sections was also studied (Uzzaman et al. 2012a-c;2013;2017;2020a-b; Lian et al. 2016a-
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b;2017a-b; Elilarasi and Janarthanan; Chen et al. 2021; Gatheeshgar et al. 2022), and various 

reduction factors were recommended to account for the strength reduction (due to the web-

openings).   

  

3. CFS built-up I-beams  

A single CFS channel section's web crippling behaviour may differ from that of an open built-up 

beam formed of two such channels. However, out of the substantial web-crippling research, 

limited studies have been conducted on built-up I-beams (Winter & Pian 1946; Hetrakul & Wu 

1978; Bhakta & LaBoube 1992; Cian et al. 1995; He & Young 2022a-b), with only two studies 

being carried out on built-up sections composed on plain channel sections (He & Young 2022a-

b). These studies indicated that the current web crippling design rules (AISI S100 & EC3) are 

not adequate for CFS open built-up beams composed of plain channel sections and accordingly 

brought out proposed design rules for the same. The current study extends that work by 

exploring the web crippling behavior of CFS built-up I-beams across a wide range of critical 

parameters. 

 

The current study focuses on the web crippling response of CFS built-up I-beams composed of 

two plain channel sections, fastened through the web at various distinct points across the cross-

section and longitudinally. First, a numerical model was developed in ABAQUS, and validated 

against the relevant test data available in the literature. Next, the validated model was used to 

carry out an extensive parametric study by varying critical parameters used in the web crippling 

design expression of the North American Specification (AISI S100). The effect of all these 

critical parameters on the web crippling behavoir has been explored. Lastly, the web crippling 

design strengths were determined using the current North American Specification (AISI S100) 

and Eurocode (EN1993-1-3). These web crippling design strengths were compared against the 

numerical web crippling strengths to assess the accuracy of the current design codes. 

 

4. Numerical modelling technique and validation 

ABAQUS platform was used to simulate the web-crippling response of CFS built-up I-beams 

composed of two plain channel sections, as shown in Fig.1. The channels were oriented in the 

back-to-back configuration and connected through the web at distinct locations along the beam 

span.  The channel sections and bearing plates were simulated using shell elements (S4R) and 

solid elements (R3D4) respectively. A mesh convergence study favored the adoption of square 

meshes (10 mm) for the flat zones of channel sections. A finer mesh (3-4 parts) was adopted at 

the corner zones (flange-web junctions). The CFS material behavior with strain hardening effect 

was adopted through the material model (proposed by Gardner and Yun 2018). The engineering 

stress-strain was converted into the true stress and plastic strain, using the method given in the 

ABAQUS manual. Reference points were created above the top bearing plate and below the 

lower bearing plate. The bearing plates were connected to their respective reference points using 

rigid body constraints. The fasteners were simulated using 3D beam connecting elements. 

Surface interactions were considered by adopting hard contact between the contact surfaces, with 

small sliding, addressing both tangential and normal contact responses.  

The numerical model developed was calibrated against the test results on CFS built-up I-beams 

composed on plain channels (He & Young 2022a) available in the literature. The failure modes 

and peak loads were validated, as shown in Fig. 2 for specimen ITF-120×80×1.9N50-0.1. Table 

1 compares the numerical and test strengths on CFS built-up I-beams (He & Young 2022a). A 
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mean value of 1.02 with a standard deviation of 0.045 was achieved for the ratio of test strength 

to numerical strength. Comparing the FEA results and test results in terms of peak strength and 

failure mode indicate a good match. Therefore, the numerical model can be adopted for the 

intended parametric studies. 

 

 

 
 

Figure 1: Cross-sectional details of the built-up 

 

Table 1: Comparison of test results and numerical strengths for validation (He & Young 2022a) 

Specimen PTest (kN) PFEA (kN) PTest/PFEA 

EOF-120×80×1.9N50-0.1 20.18 20.78 0.97 

IOF-200×140×1.2N90-0.3 15.16 13.98 1.08 

ETF-200×140×1.9N90-0.5 12.45 12.2 1.02 

ITF-120×80×1.9N50-0.1 10.0 9.90 1.01 

  Ave. 1.02 

Std. dev. 0.045 
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Figure 2: Comparison of the test failure mode with the numerical faiure mode (He & Young 2022a) 

 

5. Parametric study 

For the parametric study, a built-up beam similar to He & Young (2022a), i.e., composed of two 

plain channel sections was adopted. The flange width and web depth of each channel were fixed 

at 50 mm and 175 mm respectively. The thickness of the channel was varied from 1 mm to 3 

mm. The ratio of the corner radius to the wall thickness was varied from 0.5 to 2.5. The ratio of 

the distance of the fastener from the flange to the web depth was varied from 0.1 to 0.5. The 

bearing lengths were varied from 50 mm to 150 mm. The yield strength of the steel was adopted 

as 250 MPa. The nomenclature of the specimens was adopted in such a way that important 

details get reflected. For example, in BS-250-175-1-0.5-N50-0.1, the first term BS stands for 

built-up section. The second term 175 represents the yield strength (MPa) of the steel used. The 

third term 175 indicates the web depth in mm. The forth term 1 represents the wall thickness in 

mm. The fifth term 0.5 indicates the ratio of the corner radius to the wall thickness. The sixth 

term N50 represents the bearing length in mm. The last term 0.1 stands for the ratio of the 

distance of the fastener from the flange to the web depth. All these critical parameters affected 

the web crippling strength of CFS built-up beams composed of two plain channel sections. 

Generally, a reduction in the bearing length resulted in lowering the web crippling strength, 

while as increasing the wall thickness improved the web crippling resistance significantly. Also, 

the increase in the ratio of the distance of the fastener from the flange to the web depth, overall 

resulted in a drop in the web crippling strengths.  

 

 

 



 6 

6. Design strengths 

The web crippling strengths of the various specimens were quantified using the current North 

American Specification (AISI S100) and Eurocode (EN1993-1-3), and were compared against 

the numerical web crippling strengths to assess the accuracy, and are presented in Table 2. 

Table 2: Comparison of design strengths and the numerical strengths. 
Specimen PFEA PNAS PEC3 PFEA / PNAS PFEA / PEC3 

BS-250-175-1-0.5-N50-0.1 6.53 6.04 3.76 1.08 1.73 

BS-250-175-1-0.5-N50-0.3 4.79 6.04 3.76 0.79 1.27 

BS-250-175-1-0.5-N50-0.5 3.13 6.04 3.76 0.52 0.83 

BS-250-175-1-0.5-N100-0.1 5.10 6.94 4.71 0.74 1.08 

BS-250-175-1-0.5-N100-0.3 5.14 6.94 4.71 0.74 1.09 

BS-250-175-1-0.5-N100-0.5 3.43 6.94 4.71 0.49 0.73 

BS-250-175-1-0.5-N150-0.1 5.96 7.63 5.43 0.78 1.10 

BS-250-175-1-0.5-N150-0.3 5.87 7.63 5.43 0.77 1.08 

BS-250-175-1-0.5-N150-0.5 3.75 7.63 5.43 0.49 0.69 

BS-250-175-1-1.0-N50-0.1 4.05 5.78 3.76 0.70 1.08 

BS-250-175-1-1.0-N50-0.3 5.11 5.78 3.76 0.88 1.36 

BS-250-175-1-1.0-N50-0.5 3.14 5.78 3.76 0.54 0.83 

BS-250-175-1-1.0-N100-0.1 4.44 6.64 4.71 0.67 0.94 

BS-250-175-1-1.0-N100-0.3 5.68 6.64 4.71 0.85 1.21 

BS-250-175-1-1.0-N100-0.5 3.44 6.64 4.71 0.52 0.73 

BS-250-175-1-1.0-N150-0.1 4.85 7.31 5.43 0.66 0.89 

BS-250-175-1-1.0-N150-0.3 6.34 7.31 5.43 0.87 1.17 

BS-250-175-1-1.0-N150-0.5 3.78 7.31 5.43 0.52 0.69 

BS-250-175-1-2.5-N50-0.1 4.15 5.28 3.76 0.79 1.10 

BS-250-175-1-2.5-N50-0.3 4.60 5.28 3.76 0.87 1.22 

BS-250-175-1-2.5-N50-0.5 3.19 5.28 3.76 0.60 0.85 

BS-250-175-1-2.5-N100-0.1 4.50 6.07 4.71 0.74 0.96 

BS-250-175-1-2.5-N100-0.3 5.91 6.07 4.71 0.97 1.26 

BS-250-175-1-2.5-N100-0.5 3.51 6.07 4.71 0.58 0.75 

BS-250-175-1-2.5-N150-0.1 4.93 6.68 5.43 0.74 0.91 

BS-250-175-1-2.5-N150-0.3 6.23 6.68 5.43 0.93 1.15 

BS-250-175-1-2.5-N150-0.5 3.84 6.68 5.43 0.58 0.71 

BS-250-175-2-0.5-N50-0.1 29.39 29.59 12.38 0.99 2.37 

BS-250-175-2-0.5-N50-0.3 24.79 29.59 12.38 0.84 2.00 

BS-250-175-2-0.5-N50-0.5 16.67 29.59 12.38 0.56 1.35 

BS-250-175-2-0.5-N100-0.1 30.64 33.09 15.06 0.93 2.04 

BS-250-175-2-0.5-N100-0.3 29.13 33.09 15.06 0.88 1.93 

BS-250-175-2-0.5-N100-0.5 18.79 33.09 15.06 0.57 1.25 

BS-250-175-2-0.5-N150-0.1 36.78 35.77 17.11 1.03 2.15 

BS-250-175-2-0.5-N150-0.3 33.84 35.77 17.11 0.95 1.98 

BS-250-175-2-0.5-N150-0.5 21.26 35.77 17.11 0.59 1.24 

BS-250-175-2-1.0-N50-0.1 25.88 28.71 12.38 0.90 2.09 

BS-250-175-2-1.0-N50-0.3 17.88 28.71 12.38 0.62 1.44 
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Specimen PFEA PNAS PEC3 PFEA / PNAS PFEA / PEC3 

BS-250-175-2-1.0-N100-0.1 30.91 32.11 15.06 0.96 2.05 

BS-250-175-2-1.0-N100-0.3 26.55 32.11 15.06 0.83 1.76 

BS-250-175-2-1.0-N100-0.5 18.90 32.11 15.06 0.59 1.26 

BS-250-175-2-1.0-N150-0.1 36.92 34.72 17.11 1.06 2.16 

BS-250-175-2-1.0-N150-0.3 31.56 34.72 17.11 0.91 1.84 

BS-250-175-2-2.5-N50-0.1 26.92 27.02 12.38 1.00 2.17 

BS-250-175-2-2.5-N50-0.3 24.29 27.02 12.38 0.90 1.96 

BS-250-175-2-2.5-N50-0.5 17.20 27.02 12.38 0.64 1.39 

BS-250-175-2-2.5-N100-0.1 31.64 30.22 15.06 1.05 2.10 

BS-250-175-2-2.5-N100-0.3 27.38 30.22 15.06 0.91 1.82 

BS-250-175-2-2.5-N100-0.5 19.52 30.22 15.06 0.65 1.30 

BS-250-175-2-2.5-N150-0.1 38.37 32.67 17.11 1.17 2.24 

BS-250-175-2-2.5-N150-0.3 36.76 32.67 17.11 1.13 2.15 

BS-250-175-2-2.5-N150-0.5 22.14 32.67 17.11 0.68 1.29 

BS-250-175-3-0.5-N50-0.1 52.77 70.99 25.20 0.74 2.09 

BS-250-175-3-0.5-N50-0.3 56.61 70.99 25.20 0.80 2.25 

BS-250-175-3-0.5-N50-0.5 41.66 70.99 25.20 0.59 1.65 

BS-250-175-3-0.5-N100-0.1 63.44 78.23 30.11 0.81 2.11 

BS-250-175-3-0.5-N100-0.3 65.22 78.23 30.11 0.83 2.17 

BS-250-175-3-0.5-N100-0.5 47.10 78.23 30.11 0.60 1.56 

BS-250-175-3-0.5-N150-0.1 82.68 83.78 33.88 0.99 2.44 

BS-250-175-3-0.5-N150-0.3 93.51 83.78 33.88 1.12 2.76 

BS-250-175-3-0.5-N150-0.5 55.81 83.78 33.88 0.67 1.65 

BS-250-175-3-1.0-N50-0.1 53.63 69.29 25.20 0.77 2.13 

BS-250-175-3-1.0-N50-0.3 43.87 69.29 25.20 0.63 1.74 

BS-250-175-3-1.0-N50-0.5 52.49 69.29 25.20 0.76 2.08 

BS-250-175-3-1.0-N100-0.1 67.26 76.36 30.11 0.88 2.23 

BS-250-175-3-1.0-N100-0.3 51.16 76.36 30.11 0.67 1.70 

BS-250-175-3-1.0-N100-0.5 48.20 76.36 30.11 0.63 1.60 

BS-250-175-3-1.0-N150-0.1 82.11 81.78 33.88 1.00 2.42 

BS-250-175-3-1.0-N150-0.3 65.55 81.78 33.88 0.80 1.93 

BS-250-175-3-1.0-N150-0.5 55.23 81.78 33.88 0.68 1.63 

BS-250-175-3-2.5-N50-0.1 58.52 66.00 25.20 0.89 2.32 

BS-250-175-3-2.5-N50-0.3 59.99 66.00 25.20 0.91 2.38 

BS-250-175-3-2.5-N50-0.5 43.32 66.00 25.20 0.66 1.72 

BS-250-175-3-2.5-N100-0.1 71.82 72.73 30.11 0.99 2.39 

BS-250-175-3-2.5-N100-0.3 71.87 72.73 30.11 0.99 2.39 

BS-250-175-3-2.5-N100-0.5 50.60 72.73 30.11 0.70 1.68 

BS-250-175-3-2.5-N150-0.1 89.37 77.90 33.88 1.15 2.64 

BS-250-175-3-2.5-N150-0.3 92.07 77.90 33.88 1.18 2.72 

BS-250-175-3-2.5-N150-0.5 61.90 77.90 33.88 0.79 1.83 

Ave. 0.80 1.63 

Std. dev. 0.18 0.56 
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Table 2 shows that the current design codes predict the web crippling strengths of CFS built-up 

beams composed of two plain channel sections inconsistently. The North American Specification 

(AISI S100)  mostly over-predicted the web crippling strengths. The mean and standard 

deviation of the ratio of numerical strength to predicted strength are 0.8 and 0.18 respectively. 

On the contarary the Eurocode (EN1993-1-3) mostly under-predicted the web crippling 

strengths. In this case the mean and standard deviation of the ratio of numerical strength to 

predicted strength are 1.63 and 0.56 respectively. The outcomes of this comparison indeed call 

for more research on such configurations and the need to bring out modified design rules for the 

same. 

 

7. Conclusions 

The current study presented the web crippling behavior of CFS built-up I-beams composed of 

two plain channel sections fastened through the web at various distinct points across the cross-

section and longitudinally. First, a numerical model was created in ABAQUS, then it was 

validated using test data from the literature pertinent to the model. The verified model was 

utilised to conduct a thorough parametric research by modifying crucial parameters used in the 

North American Specification's web crippling design expression. The influence of all these 

critical parameters on the web crippling behavoir has been assessed. Finally, the web crippling 

design strengths were calculated using the most recent North American Specification (AISI 

S100) and Eurocode (EN1993-1-3). To assess the accuracy of the current design codes, these 

web crippling design strengths were compared to numerical web crippling strengths. All the 

critical parameters affected the web crippling strength of CFS built-up beams composed of two 

plain channel sections. Generally, a reduction in the bearing length lowered the web crippling 

strength, while increasing the wall thickness improved the web crippling resistance significantly. 

Also, the increase in the ratio of the distance of the fastener from the flange to the web depth, 

overall resulted in a drop in the web crippling strengths. The North American Specification 

(AISI S100) estimated the web crippling strengths unconservatively for the full sectional 

slenderness range of the web. The Eurocode (EN1993-1-3) predicted the web crippling strength 

conservatively in some circumstances and unconservatively in others, indicating variation in 

accuracy. This clearly demonstrates the necessity for additional research on such built-up beams 

in order to provide proper design criteria for the same. 
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Notations 

Ave.  : Average 

CFS : Cold-formed steel 

PNAS : Design strength predicted by North American Specification (AISI S100:2020)  

PEC3 : Design strength predicted by and European Standards EN1993-1-3 (2006) 

PTest    : Peak test strength 

Std. dev. : Standard deviation 
  

  


