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Abstract 
Geometric nonlinear or second-order effects are the changes to forces, moments, and 
displacements that result when solving the equations of equilibrium on the actual deformed shape 
rather than the undeformed shape of a structure. For most civil engineering structures constructed 
of steel or aluminum and designed for serviceability, these additional nonlinear effects are 
significant enough to warrant consideration when designing for strength, but are often not 
substantial enough to require an extremely accurate numerical solution scheme. With this in mind, 
this paper proposes the use of an approximate second-order elastic solution method that utilizes 
only two linear analyses within a single load increment. Further contributing to the method’s 
efficiency is its use of analysis results from the serviceability design process in the initial or 
predictor step, thereby requiring only one linear corrector analysis per load combination 
investigated. Through comparisons with a more exact solution scheme, twenty-two steel 
benchmark frames have been used to demonstrate the method’s ability to maintain sufficient 
accuracy while significantly improving computational efficiency. Consideration is given to the 
advantages and limitations of the method, leading to a more general discussion regarding frame 
sensitivity to second-order effects.  
 
 
1. Introduction 
Civil engineering structures are typically designed using elastic analyses to assess both 
serviceability and strength requirements.  With regard to serviceability, the deflections are small 
thereby permitting analysis results for individual load types (dead, live, wind, etc.) to be factored 
and summed as needed to assess specific design requirements. With regard to strength 
requirements, however, the deflections are large enough that the opportunity to employ 
superposition is often not permitted. As a result, separate geometric nonlinear analyses are needed 
for the large number, often on the order of hundreds, of load combinations that may require 
consideration during preliminary and final design processes. 
 
With this in mind, it is important for the engineer to maintain an effective balance between the 
needs of the current design problem and the accuracy, required modeling effort, and computational 
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expense of the relevant geometric nonlinear analysis methods. The available analysis options range 
from a rigorous ‘nearly exact’ geometric nonlinear analysis at one extreme, to the approximation 
of nonlinear effects through the combined use of linear analyses and moment amplification factors, 
at the other extreme. Although the latter is often an efficient choice, its practicality usually lends 
itself only to structural systems with orthogonal framing of uniform heights that are continuous 
across all bays. In addition, the use of moment amplification approaches is limited in some codes 
and unavailable in others (ADM 2020). 
 
This paper is based upon a detailed study completed and presented by Ziemian and Ziemian (2020).  
Using a suite of benchmark problems for assessment, the proposed approximate second-order 
elastic analysis algorithm, which is based on the finite element method, meets the following goals: 

• Efficient for evaluating a large number of load combinations in design and/or rapidly 
analyzing preliminary designs 

• Applicable to a full range of geometries 
• Utilizes the results of analyses completed to assess serviceability conditions 
• Performs with an acceptable level of accuracy for the design of ‘typical’ steel structures, 

i.e. having nonlinear responses that require consideration, but not at levels that warrant a 
rigorous “nearly exact” analysis 

 
2. SIPC Method 
In a geometric nonlinear analysis, the total load on the structure is typically applied incrementally, 
with the geometry and internal force distribution updated at the end of each load increment 
(McGuire et al. 2000). The more accurate the representation of the nonlinear relationship between 
load increment and the resulting increment in deflection, the better the piecewise fit will 
approximate the exact equilibrium solution.  For highly nonlinear behavior, several iterations are 
often performed within a series of reduced load increments, thereby resulting in an accurate result 
but at significant computational cost. 
 
The method presented and assessed in this study is based on a strategy equivalent to solving 
systems of differential equations using a mid-point Runge-Kutta method – often referred to as a 
predictor-corrector solution scheme. As shown in Fig. 1, the displacement {∆i} for factored load 
combination i is determined without iteration, by employing a representative system-stiffness 
matrix [𝐾𝐾�𝑖𝑖] and solving the linear system of equations for a given applied load {Pi} 

 
[𝐾𝐾�𝑖𝑖]{Δ𝑖𝑖} = {𝑃𝑃𝑖𝑖}                                                                   (1) 

 
The deformed geometry and corresponding element forces used in computing the system’s 
midpoint stiffness [𝐾𝐾�𝑖𝑖]  are approximated as one-half the sum of the factored displacements and 
element forces corresponding to each load type (i.e. live, dead, wind, etc.) appearing in load 
combination i.  As such, a first-order elastic analysis for all load types within the factor load 
combinations being considered would first need to be completed. 
 
This single increment predictor-corrector (SIPC) solution scheme can be an efficient second-order 
RK method that employs only two linear analyses, at two sampling points, within a single load 
increment. In addition, and as outlined in the next section, the first of these two analyses need only 
be performed once (during serviceability design). 
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Figure 1: Graphical representation of the single increment predictor-corrector (SIPC) solution scheme 

 
 
2.1 Use of SIPC method in the design process 
The SIPC solution scheme is proposed for use as an approximate method for the geometric 
nonlinear (second-order elastic) analysis of a structural system. And, it can be used for the analysis 
and design of any frame geometry as follows. 
 
Design for Serviceability 
In assessing the serviceability requirements in the design of a steel or aluminum frame, a linear 
(first-order elastic) analysis is performed to determine the deflections and member forces within 
the structural system. This is typically done by performing a single linear analysis for all of the 
different load types being considered, including dead, live, and wind. Mathematically, this 
involves solving the governing system of stiffness equations for the unknown displacement vectors 
that correspond to a given set of unfactored applied load vectors. It is important to note that the 
system stiffness matrix is not a function of the applied loads and is representative of the 
undeformed and unloaded geometry, and therefore, the serviceability analysis can be done by 
solving a single system of linear equations with multiple right-hand sides (Golub and Van Loan 
2013). 
 
For example, consider Eq. 2, in which [𝐾𝐾𝑒𝑒] is the system’s first-order elastic stiffness matrix, 
{Pload} are vectors representing the unfactored dead (D), live (L), and wind (W) load on the system, 
and {∆load} are vectors signifying the resulting system deflections due to these dead, live, and wind 
loads. 
 

[𝐾𝐾𝑒𝑒]�{Δ𝐷𝐷} ∶ {Δ𝐿𝐿} ∶ {Δ𝑊𝑊}� = �{𝑃𝑃𝐷𝐷} ∶ {𝑃𝑃𝐿𝐿} ∶ {𝑃𝑃𝑊𝑊}�                                    (2) 
 
The solution for this system of linear equations with multiple right-had sided involves: 
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a. a one-time decomposition of the stiffness matrix [𝐾𝐾𝑒𝑒]  
 

[𝐾𝐾𝑒𝑒] = [𝐿𝐿][𝐿𝐿]𝑇𝑇                                                          (3) 
 

where [L] is a lower triangular matrix, 
b. a simple forward substitution to solve for temporary vectors {Υ𝑖𝑖}, 

 
[𝐿𝐿]�{Υ𝐷𝐷} ∶ {Υ𝐿𝐿} ∶ {Υ𝑊𝑊}� = �{𝑃𝑃𝐷𝐷} ∶ {𝑃𝑃𝐿𝐿} ∶ {𝑃𝑃𝑊𝑊}�                          (4) 

 
c. a backward substitution to solve for each of the displacement vectors 

 
[𝐿𝐿]𝑇𝑇�{Δ𝐷𝐷} ∶ {Δ𝐿𝐿} ∶ {Δ𝑊𝑊}� = �{Υ𝐷𝐷} ∶ {Υ𝐿𝐿} ∶ {Υ𝑊𝑊}�                                   (5) 

 
It is noted that the majority of the computational time in this analysis is spent on the one-time 
decomposition of the system stiffness matrix (Eq. 3).  In other words, separate first-order elastic 
analyses are not required for each load type. 
 
Vectors of element forces and moments �𝑓𝑓�, with reference to their local coordinate systems, are 
computed for each of the load types. For example, such values for a given element would be 
obtained from the matrix multiplication 
 

�𝑘𝑘�𝑒𝑒�[Γ𝑜𝑜]�{δ𝐷𝐷} ∶ {δ𝐿𝐿} ∶ {δ𝑊𝑊}� = ��𝑓𝑓𝐷𝐷� ∶ �𝑓𝑓𝐿𝐿� ∶ �𝑓𝑓𝑊𝑊��                               (6) 
 
in which, �𝑘𝑘�𝑒𝑒� is the element’s first-order elastic stiffness matrix relative to its local coordinate 
system, [Γ𝑜𝑜] is the element’s global-to-local coordinate transformation matrix based on the 
system’s original undeformed geometry, and {δ} are vectors of element end displacements 
extracted from the vectors of system deflections �{Δ𝐷𝐷} ∶ {Δ𝐿𝐿} ∶ {Δ𝑊𝑊}�. These displacement vectors 
are then used in the design process to perform serviceability checks, and thereby confirm that the 
members and system are of adequate stiffness.  For example, live load beam deflections would be 
assessed using the information provided in the deflection vectors {𝛿𝛿𝐿𝐿}.  
 
Design for Strength 
In further designing the structural system for strength, the SIPC method begins with a predictor 
step that uses the first-order elastic analysis results from the serviceability checks.  Specifically, 
for each factored load combination being considered, superposition (scaling and summing) of the 
previously determined nodal displacements {∆𝐷𝐷} , {∆𝐿𝐿} , and {∆𝑊𝑊}  and element forces and 
moments �𝑓𝑓𝐷𝐷�, �𝑓𝑓𝐿𝐿�, and �𝑓𝑓𝑊𝑊� are used. 
 
For example, for the factored load combination 𝛼𝛼𝛼𝛼 + 𝛽𝛽𝐿𝐿 + 𝛾𝛾𝛾𝛾 , the strength analysis would 
proceed as follows. 
 

a. The original geometry of the structural system (i.e. x, y, and z coordinates of each node) is 
modified to the midpoint geometry by adding 50% of the factored combined displacements.  
The updated coordinates of the ith node are thus 
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�                 (7) 

 
b. Similarly, element forces and moments for use in forthcoming element geometric stiffness 

matrices are taken as 50% of the combinations of their factored values given above, noting 
that it is assumed that all element forces and moments are originally zero (i.e. the system 
is originally unloaded).  The updated element forces and moments in the jth element are 

 
�𝑓𝑓𝑗𝑗�𝑚𝑚𝑖𝑖𝑚𝑚 =  �Γ𝑗𝑗,𝑚𝑚𝑖𝑖𝑚𝑚� �Γ𝑗𝑗,𝑜𝑜�

𝑇𝑇
�0.5 �𝛼𝛼�𝑓𝑓𝑗𝑗�𝐷𝐷 + 𝛽𝛽�𝑓𝑓𝑗𝑗�𝐿𝐿 + 𝛾𝛾�𝑓𝑓𝑗𝑗�𝑊𝑊��                      (8) 

 
where �Γ𝑗𝑗,𝑜𝑜� is the element’s global-to-local coordinate transformation matrix based on the 
system’s original undeformed geometry, and �Γ𝑗𝑗,𝑚𝑚𝑖𝑖𝑚𝑚�  is element’s global-to-local 
coordinate transformation matrix based on the system’s updated geometry per previous 
step (a). 

 
c. The system of equilibrium equations for the geometric nonlinear analysis is 

 
�𝐾𝐾𝑒𝑒 + 𝐾𝐾𝑔𝑔��Δ𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊� = �𝑃𝑃𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊�                                      (9) 

 
where  �𝑃𝑃𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊� =  𝛼𝛼{𝑃𝑃𝐷𝐷} + 𝛽𝛽{𝑃𝑃𝐿𝐿} + 𝛾𝛾{𝑃𝑃𝑊𝑊}, and �𝐾𝐾𝑒𝑒 + 𝐾𝐾𝑔𝑔� is assembled from the 
element elastic and geometric stiffness matrices.  These matrices are computed for each 
element with 
 

�𝑘𝑘𝑒𝑒 + 𝑘𝑘𝑔𝑔� = [Γ𝑚𝑚𝑖𝑖𝑚𝑚]𝑇𝑇�𝑘𝑘�𝑒𝑒 + 𝑘𝑘�𝑔𝑔�[Γ𝑚𝑚𝑖𝑖𝑚𝑚]                                      (10) 
 
in which the element’s global-to-local coordinate transformation matrix [Γ𝑚𝑚𝑖𝑖𝑚𝑚] is based on 
the updated geometry defined in previous step (a), �𝑘𝑘�𝑒𝑒�  is the element’s elastic stiffness 
matrix, and �𝑘𝑘�𝑔𝑔� is the element’s geometric stiffness matrix based on the element forces 
and moment computed in previous step (b). 

 
d. Once again using an efficient algorithm, such as banded Cholesky decomposition (Golub 

and Van Loan 2013), the above system of equilibrium equations (Eq. 9) is solved for the 
system displacements �Δ𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊�  that correspond to the applied loads of the given 
factored load combination �𝑃𝑃𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊�. As with Eq. 3, the majority of the computational 
time in this analysis is spent on this step. 
 

e. The final geometry of the structural system (i.e. x, y, z coordinates of each node) is based 
on the deflections computed in previous step (d).  The updated coordinates for the ith node 
are 
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𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊

                               (11) 

 
f. Each element’s end forces and moments �𝑓𝑓𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊�  for use in design are then 

determined according to the following matrix product 
 

�𝑓𝑓𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊� = �Γ𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓� [Γ𝑚𝑚𝑖𝑖𝑚𝑚]𝑇𝑇 ��𝑘𝑘�𝑒𝑒�[Γ𝑚𝑚𝑖𝑖𝑚𝑚]�δ𝛼𝛼𝐷𝐷+𝛽𝛽𝐿𝐿+𝛾𝛾𝑊𝑊��                    (12) 
 
in which [Γ𝑚𝑚𝑖𝑖𝑚𝑚] is as defined above, and �Γ𝑓𝑓𝑖𝑖𝑓𝑓𝑓𝑓𝑓𝑓� is the element’s global-to-local coordinate 
transformation matrix based on the system’s updated geometry per previous step (e). 

 
The above SIPC procedure, steps (a)-(f), would be repeated for each of the factored load 
combinations being investigated. It is extremely efficient because only one system of equations 
(for the corrector step) needs to be assembled and solved for each factored load combination. In 
contrast, a rigorous iterative-incremental solution scheme could require a computational effort that 
could be orders of magnitude higher, thereby limiting its usefulness in routine design. That 
computational cost, however, may come with the benefit of improved accuracy. For this reason, 
the remainder of this paper focuses on assessing the accuracy of the proposed single-increment 
predictor-corrector (SIPC) solution scheme. 
 
3. Benchmark Frames 
Twenty-two steel benchmark frames were used to assess the accuracy of the SIPC solution scheme. 
Each of the planar frames (Table 2) has been presented in the literature previously, and as a 
collection, they represent a variety of practical geometries with a range of sensitivities to second-
order effects. All member cross sections are oriented to bend about their major axis (with the 
exception of two frames), and the structures are all assumed to be fully braced out-of-plane. For 
each frame, the member sizes, material properties, support conditions, and loading ratios have been 
duplicated from the original cited work. In this study, however, adjustments from the original load 
magnitudes have been made to assure that each structure is supporting sufficient load such that its 
strength is close to its design capacity. This was done to validate the proposed approximate method 
rigorously, and to ensure that the assessment of its accuracy involved conditions that accentuate 
second-order effects. In addition, all frames represent realistic designs that satisfy service-load 
criteria. Detailed information, including member sizes and loading, is available for all benchmark 
frames by Ziemian and Ziemian (2021b). 
 
Each frame was modeled and analyzed within MASTAN2 (Ziemian and McGuire 2014). The 
analysis routines account for second-order effects using an updated Lagrangian formulation and 
geometric stiffness matrices (McGuire et al. 2000).  All members were represented as four planar 
6-dof line elements, which has been shown to be sufficient in frames dominated by sidesway 
behavior and P-∆ effects (Griffis and White 2013). 
 
MASTAN2 was used to perform four different elastic analyses on each of the twenty-two 
benchmark frames studied.  
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1. An elastic linear (eigenvalue) buckling analysis (LBA) using the frame’s perfect geometry, 
to compute the critical load factor αcr corresponding to the lowest sway buckling mode of 
the structure.  

2. A first-order linear elastic analysis (LA) performed on the imperfect (out-of-plumb) 
geometry.  The imperfect geometry was used here in an effort to focus comparative studies 
on the impact of second-order effects, without being confounded by the effect of the initial 
imperfection. 

3. A rigorous second-order elastic analysis with imperfections (GNIA) using an incremental-
iterative work control (WC) solution scheme (Yang and Kuo 1994) with a very small step 
size of 0.001. The WC solution is considered very accurate for the mesh discretization (four 
6-dof line elements per member) and the small step size (0.001) used, and it served as the 
‘expected’ or ‘exact’ elastic solution for comparisons when assessing the accuracy of the 
SIPC method, i.e. computing percent errors 

4. An approximate second-order elastic analysis with imperfections (GNIA) using the 
proposed single-increment predictor-corrector (SIPC) scheme. 

 

Table 1: Overview of the benchmark frames 
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3.1 Stability sensitivity indices 
Validation of the SIPC solution scheme, which approximates non-linear behavior with a linear 
function, required a collection of established benchmark frames that have realistic stiffness and 
strength, and feature a range of sensitivity to geometric nonlinear effects. As provided in Table 2, 
three indices were used to indicate the degree to which each benchmark system was stability 
sensitive. 
 
The first of these indices is the elastic critical buckling load ratio of the frame, αcr, which comes 
from the LBA and represents the lowest multiplier against the applied load that would result in an 
elastic instability of the frame in a global sway mode (Walport et al. 2019). The significance of 
second-order effects may also be expressed as an amplification factor that was originally proposed 
by Merchant (1954) and computed from αcr as 
 

𝐴𝐴𝐴𝐴𝛼𝛼𝑐𝑐𝑐𝑐 = 1
1−1 𝛼𝛼𝑐𝑐𝑐𝑐�

                                                                (13) 

 
For the frames investigated in this study, the αcr values ranged from 1.19 to 7.86, corresponding to 
range of amplification factors of 1.15 ≤ 𝐴𝐴𝐴𝐴𝛼𝛼𝑐𝑐𝑐𝑐  ≤ 6.22. 
 

Table 2: Indicators of stability sensitivity for the benchmark frames 

   Maximum 2nd- to 1st-order ratios 

Frame αcr   AFαcr
 δ𝑊𝑊𝑊𝑊

δ𝐿𝐿𝐿𝐿
 M𝑊𝑊𝑊𝑊

M𝐿𝐿𝐿𝐿  

1 7.86 1.15 1.14 1.15 
2 6.02 1.20 1.22 1.08 
3 1.39 3.58 3.44 3.23 
4 1.19 6.22 6.05 2.76 
5 3.41 1.42 1.45 1.13 
6 5.73 1.21 1.18 1.08 
7 6.35 1.19 1.18 1.15 
8 2.36 1.74 1.38 1.32 
9 2.62 1.62 1.65 1.09 

10 1.31 4.27 5.79 5.73 
11 4.34 1.30 1.30 1.24 
12 6.97 1.17 1.16 1.17 
13 6.14 1.19 1.19 1.21 
14 3.69 1.37 1.36 1.41 
15 2.67 1.60 1.58 1.66 
16 2.27 1.79 1.76 1.88 
17 4.88 1.26 1.25 1.28 
18 6.85 1.17 1.17 1.13 
19 5.68 1.21 1.21 1.23 
20 5.85 1.21 1.20 1.22 
21 6.65 1.18 1.17 1.19 
22 6.39 1.19 1.18 1.21 
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The second index provided is the maximum ratio of the second-order (WC) to first-order (LA) 
lateral displacements at any joint in the frame. This index, δ𝑊𝑊𝑊𝑊 δ𝐿𝐿𝐿𝐿⁄ , ranged from 1.14 to 6.05 for 
the benchmark frames investigated, and was in excellent agreement with the associated 𝐴𝐴𝐴𝐴𝛼𝛼𝑐𝑐𝑐𝑐 . 
 
The last of the indices used is the ratio of the maximum second-order (WC) to first-order (LA) 
design moments for all members in the frame, or M𝑊𝑊𝑊𝑊 M𝐿𝐿𝐿𝐿⁄ .  The design moment in a member is 
the moment used to proportion the member, i.e. the largest moment along the member’s span - 
considering both directions of imperfection and lateral loading. For the benchmark frames 
investigated, M𝑊𝑊𝑊𝑊 M𝐿𝐿𝐿𝐿⁄   ranged from 1.08 to 5.73. This index is not to be confused with the largest 
ratio of second-order to first-order moments at any location along the member’s span, which is 
considered less significant when designing members – unless it includes the maximum or 
controlling member moments. 
 
4. Results and Discussion 
The results of the work-control (WC) and the SIPC second-order analyses are compared to study 
the response of the benchmark frames as a means for assessing the performance of the SIPC 
solution scheme. Comparisons are focused on those results believed to be most relevant to the 
structural engineer, specifically, lateral joint displacements, maximum member design moments, 
and interstory drifts. 
 
A minor amount of data preparation was done to clean and transform the results prior to processing. 
This included the filtering of data results from the WC analysis in an effort to avoid the large 
exaggeration of percent errors that can occur when working with extremely small quantities, which 
would be considered negligible in the design process. Details of this filtering process are provided 
in Ziemian and Ziemian (2021a). 
 
4.1 Joint displacements and member design moments 
The performance of the proposed SIPC solution scheme in computing lateral joint displacements 
and member moments was assessed by computing maximum percent relative errors, in which 
results from the WC solution scheme were taken as “exact”. Fig. 2 shows the largest error 
magnitude for both lateral joint displacements and member design moments within each frame as 
a function of the frame’s critical buckling load ratio αcr. 
 
The maximum (magnitude) error associated with the lateral joint displacements obtained by the 
proposed SIPC method was below 2% for 11 (or half) of the 22 frames, and below 5.5% for 16 (or 
nearly three-quarters) of the frames. Similarly, the maximum (magnitude) error associated with 
the SIPC method’s member design moments was below 2% for 11 frames, and below 5% for 17 
frames.  
 
As expected, performance of the SIPC solution scheme was strongly dependent on the significance 
of second-order effects, and the method’s accuracy decreased as a frame’s response became highly 
nonlinear. With the SIPC method using a secant stiffness computed at 50% of the system’s applied 
load (Fig. 1), inaccuracies can result when a significant nonlinear response occurs in the 
equilibrium path between 0.5Pi and Pi. The largest errors (over 35%) were associated with Frames 
4, 10, and 3, with αcr values of 1.19, 1.31, and 1.39, respectively. Frames with 2 < αcr < 3 had 
maximum errors between 3% and 14% when considering both joint displacements and design 
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moments. For the remaining sixteen frames with 3 < αcr < 8, the majority of maximum error values 
were below 2%, with the full range between 0.65% and 5.50%. 
 

 

 
(a) Maximum (magnitude) percent error associated with lateral joint displacements 

 

 
 (b) Maximum (magnitude) percent error associated with member design moments 

Figure 2: Performance of the SIPC solution scheme relative to αcr for each benchmark frame. 
Labels indicate frame number. (Ziemian and Ziemian 2021a) 

 
 
4.2 Interstory drift ratios 
Given that some specifications, such as the AISC Specification (2016), use the ratio of interstory 
drifts ∆2ndOrder/∆1stOrder as an indicator of the significance of second-order effects, this index was 
also used to assess the performance of the SIPC solution scheme. Specifically, the maximum 
percent error for each frame i was computed as 
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in which Δ𝑠𝑠𝑆𝑆𝑆𝑆𝑆𝑆𝑊𝑊, Δ𝑠𝑠𝑊𝑊𝑊𝑊 and Δ𝑠𝑠𝐿𝐿𝐿𝐿 are the interstory drifts for story s of an n-story system as computed 
by SIPC, WC, and first-order elastic analyses, respectively. 
 
The comparisons between the interstory drift ratios based on WC and SIPC analyses are further 
placed into context by providing comparative results with an established story-sidesway amplifier 
𝐴𝐴𝐴𝐴𝑠𝑠B2 (or B2). As defined in the AISC Specification, in Equation A-8-6 of Appendix 8 
 

𝐴𝐴𝐴𝐴𝑠𝑠B2 = 1

1− 𝑆𝑆𝑠𝑠
(𝑆𝑆𝑒𝑒)𝑠𝑠

                                                                  (15) 

 
where Ps is the total vertical load on story s (including load from lean-on columns) at LRFD level, 
and (Pe)s is the elastic critical buckling strength of story s. In this study, (Pe)s was determined using 
AISC Specification Equation A-8-7, which is 
 

(𝑃𝑃𝑒𝑒)𝑠𝑠 =  𝑅𝑅𝑀𝑀 �
𝐻𝐻
Δ𝐻𝐻
� 𝐿𝐿                                                            (16) 

 
where H/∆H = story shear stiffness, L = story height, RM is a stiffness reduction coefficient 
(LeMessurier 1977), with RM =1 − 0.15 (Pmf /Ps) and Pmf = vertical load in those columns in story 
s that are part of the moment frames that provides lateral stability (does not include load from any 
lean-on columns).  In this case, maximum percent error for each frame i was computed as 
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in which Δ𝑠𝑠𝑊𝑊𝑊𝑊 and Δ𝑠𝑠𝐿𝐿𝐿𝐿 are the interstory drifts for story s as computed by WC and first-order elastic 
analyses, respectively.  
 
An overview of the interstory drift comparisons is presented in Fig. 3 for all of the benchmark 
frames in which the story-sway method can be readily applied – this included 16 of the total 22 
frames. Frames with irregular geometries and without continuous orthogonal stories were not 
included because of the complexity and potential errors in computing AISC’s B2 factors. In all 
analyses, initial sidesway (global) imperfections were included.  
 
The SIPC method was found to be more accurate than AISC’s B2 method for 10 of the 16 frames, 
with maximum error magnitudes below 5%. All 10 of these frames had critical buckling load ratios 
of αcr > 3. The B2 method was more accurate for those frames with αcr < 3, although the associated 
errors were relatively large, ranging from 3.8 to 26.2%. With significantly smaller error ranges, 
the SIPC method was more precise than the B2 method for all but one of the frames. In general, 
the B2 method tended to be more conservative than the SIPC method. 
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Figure 3: Comparison of the performance of SIPC and B2 methods in computing interstory 
drift ratios, relative to αcr, for the 16 applicable frames (Ziemian and Ziemian 2021a). 

 
6. Conclusions 
This paper presents a single increment predictor-corrector (SIPC) solution scheme as an 
approximate geometric nonlinear (second-order elastic) analysis method for use in the routine 
design of steel and aluminum frames. The proposed method, which is finite element based, is 
assessed as an alternative to a rigorous and more exact geometrically nonlinear elastic analysis, as 
well as to an approximate interstory drift analysis that utilizes a well-established amplification 
factor to account for P-∆ effects. The results of a comprehensive a set of benchmark studies, 
focused on assessing the validity of a SIPC solution scheme, are provided. 
 
The accuracy of the SIPC method is quite good for the full set of benchmark frames investigated.  
Specifically, the largest errors associated with lateral joint displacements and member design 
moments fall within a range of 0.65% to 5.50% for frames with critical buckling load ratios of αcr 
> 3. The method’s accuracy, however, declines as the value of αcr decreases well below 3. For 
frames with αcr > 3, the SIPC method’s accuracy and efficiency within the design process make it 
a very attractive alternative to a more computationally expensive analysis.   
 
In comparing the interstory drift results obtained using the SIPC method with those from AISC’s 
B2 sidesway amplifier, the SIPC method was found to be more accurate for all frames with αcr > 
3. While the B2 method was more accurate for those frames with αcr < 3, the associated errors were 
quite large and the use of the amplifiers in design, for these frames, would not be recommended. 
The precision of the SIPC method was also found to be significantly better than that of the B2 
method, producing significantly smaller error ranges. 
 
The results of this study indicate that the SIPC analysis method provides an acceptable level of 
accuracy for use in designing typical steel and aluminum structures in which the deformations are 
not extreme, but are significant enough to require consideration of geometric nonlinear effects. In 
other words, the results of these benchmark studies in establishing the use of the SIPC method are 
consistent with the recommendations of EN 1993-1-1 (2005), which indicate the need of a rigorous 
second-order analysis for frames with αcr < 3. Given that the SIPC method can utilize the results 
of previous analyses used to assess serviceability conditions, and consequently, it requires only 
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one additional linear analysis for each investigated load combination, the method lends itself to an 
efficient design process when there is a need to evaluate a significantly large number of load 
combinations and/or rapidly evaluate multiple preliminary designs.  Finally, the SIPC method is 
applicable to a wide range of geometries, well beyond basic tiered structures, and it is not limited 
to planar frame analyses. This makes it an attractive alternative to a sidesway amplification 
method, such as B2, for frames with αcr > 3. 
 
Future work is planned to explore the use of SIPC in nonlinear time-history analyses. Given that 
the employed time step is typically quite small, resulting in a small to moderate degree of 
nonlinearity within a time step, the SIPC method may have great potential. 
 
Finally, it is worth noting that in addition to presenting and assessing the potential of the SIPC 
analysis method within a steel design process, this study provides extensive results that can be 
used in future benchmark studies. The MASTAN2 models and all supporting frame details have 
also been made available online (Ziemian and Ziemian 2021b) to encourage a wide range of 
additional investigations using these structural systems.  
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