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Probing the buckling of axially compressed cylindrical shells:

Stability landscape and nondestructive prediction
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Abstract

The buckling capacity of thin cylindrical shells depends on the underlying imperfections, which 
are  generally  unknown.  As  a  result,  cylindrical  shells  are  designed  conservatively  using  the 
knockdown  factor  approach  that  accommodates  the  uncertainties  associated  with  underlying 
imperfections.  Nevertheless,  the  quest  for  inexpensive  high-fidelity  estimates  of  the  buckling 
capacity of thin cylindrical shells has been continued for a long time. Recent studies show that the 
methods based on the stability landscape of thin shells have the potential for capacity prediction 
without  measuring  the  underline  imperfections.  The  stability  landscape  is  obtained  by  probing 
axially  compressed  cylindrical  shells  in  the  radially  inward  direction,  and  the  location  of  the 
probing plays a crucial role in the accuracy of the prediction.  In this study, the effect of the location 
of probing is investigated in the  context of prediction accuracy.  Further,  a zone of influence of 
imperfections is defined such that if the probing is done in the zone of influence, the prediction 
will be accurate.  Overall, this study reveals many aspects of the probing of axially compressed 
cylindrical shells: 1) probing can be used to predict the buckling capacity, 2) the probing location 
plays a crucial role in the accuracy of the prediction, and 3) a zone of influence of imperfections 
can be defined for accurate prediction of the buckling capacity of thin cylindrical shells. 

  

 

1. Introduction 

Thin shells are inherently optimal structures, and they, particularly cylinders and spheres, are 

widely used in many diverse applications ranging from aircraft fuselages to roofs of large buildings 

and from boat hulls to tall wind turbine towers. However, the optimization of thin shells comes 

with a cost— thin cylindrical shells are highly sensitive to imperfections (Koiter 1945). 

Imperfections, even relatively small, reduce the load-carrying capacities of thin shells 

significantly. The reduction in the load-carrying capacity depends on the size and the shape of 

underlying imperfections. Obtaining information about the underlying imperfection is difficult and 

expensive; as a result, the exact capacity of imperfect shells is unknown. Due to the lack of an 

inexpensive high-fidelity prediction method, thin shells are designed by the conservative 

knockdown factor method is an empirical method developed by NASA (NASA, 1965) in the late 

sixties after extensive experimental programs. 
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Nevertheless, the full engineering potential of thin shells is still not being exploited. There are 

three potential approaches by which we can design thin shells efficiently: 1) making thin shells 

imperfection insensitive, 2) developing an inexpensive high-fidelity method that predicts the 

capacity of thin shells accurately without measuring the imperfections, and 3) coming up with a 

low-cost imperfection measurement device. Attempts have been made in all three directions; 

nonetheless, the development of the second approach, i.e., developing a high-fidelity prediction 

method, is recently getting intense attention. Indeed, a promising new framework based on the 

probing of axially compressed shells has emerged for the prediction of the buckling capacity of 

thin shells without complete knowledge of the shell’s underlying imperfections (Thompson 2015, 

Thompson et al. 2016, Thompson et al. 2017, Hutchinson et al. 2017, Kreilos et al. 2017, Marthelot 

et al. 2017, Virot et al. 2017, Hutchinson et al. 2018, Fan 2019, Abramian et al. 2020, Yadav et al. 

2021, Yadav et al. 2021, Nicholas et al. 2021). Yadav et al. (2021) has proposed a non-destructive 

technique for the evaluation of thin cylindrical shells' axial buckling capacity based on stability 

landscape. This procedure consists of three steps: 1) shells are put under axial compression Fa, 2) 

these axially compressed shells are probed in the radial direction at the location of a pre-existing 

imperfection, and 3) the peak probe force Fp
max and the corresponding axial compression Fa are 

recorded and used to predict the buckling axial capacity. For a detailed explanation of the 

procedure, refer to Yadav et al. (2021). The study of Yadav et al. (2021) has established that if the 

probing is done at the right location, i.e., at the dominant imperfection, the capacity can be 

predicted accurately. However, two issues are remains to be resolved: 1) how to define the right 

location and 2) how to identify the right location. Ankalhope and Jose (2021) has proposed that 

the right location for the probing is the least resistant path, and that location can be found by 

probing at multiple locations. 

 

In this study, we computationally (FEM) investigated the importance of the location of probing in 

the context of the accuracy of prediction. First, the probing profiles, i.e., the plot of the peak probe 

force Fp
max and the corresponding axial compression Fa, are created for imperfect cylinders by 

probing away from the imperfection. Next, these probing profiles are compared with the probing 

profile of perfect, and the profile of imperfect cylinder when probing is done at the imperfection. 

Next, based on the profile comparison, a zone of influence i.e., the area around the imperfection 

that gives accurate prediction if probing is done within the area, is identified. Finally, the paper is 

concluded by noticing the main findings of this study. 

  

 

2. Finite element modeling and description of imperfection 

For this study, a cylinder with dimple-like geometric imperfection is analyzed computationally 

using FEA package ABAQUS [1]. The cylinder represents mini Coke cans (7.5 fl oz), made of 

aluminum, and chosen in the anticipation of future experiments. The dimensions and material 

properties of the cylinder are given in Table 1. Further, we simplified our modeling assuming the 

cross-sections of cans are circular throughout the length, which is a slight deviation from the real 

cans. For meshing, around 20000 four node reduced integration shell (S4R) elements are created, 

utilizing four integration points along the thickness of each element. Fig. 1 demonstrates the Finite 

Element Modeling and boundary conditions. For compressing the cylinder to a prescribed axial 

compression, two nodes are defined at the center of the top and bottom cross-sections of the 

cylinder; we call them center nodes. Rigid links are created to connect the nodes at the end of the 

cylinder to the respective center nodes to constrain the displacements U1, U2, and U3, and rotations 
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UR1, UR2, and UR3 of the nodes at the end from moving and rotating with respect to the center 

nodes. Using these constraints one end of the cylinder is clamped by fixing the central node at z = 

0. At the other end (z = L) a clamped boundary condition is enforced, but the end of the cylinder 

is loaded by applying an axial displacement U3 = -Δ till the axial compression reached the 

prescribed value as shown in Fig. 1. Once the cylinder is loaded under the prescribed axial 

compression, the probing force, directed toward the center of the cross-section, is applied as shown 

in Fig.2. 

 
Table 1: Dimensions and the material properties of the can 

R L R/t E 𝜈  

(mm) (mm)  (Gpa)  

28.6 107 286  68.95 0.3 

 

 

The dimple imperfection is modeled as a two-dimensional normal distribution function following 

Gerasimidis et al. (2018) and Yadav and Gerasimidis (2019). The mathematical description of the 

dimple imperfection is given as follows: 

 

𝑤 =  −𝛿𝑒
(

𝑥−𝑥𝑜
𝐿1

)
2

𝑒
(

𝜃−𝜃𝑜
𝜃1

)
2

                                                        (1) 

 

where 𝑤 represents the deviation from the original position in the radial direction, δ is the 

amplitude of the imperfection, 𝑥 and 𝜃 are the axial and circumferential coordinates (x0 and θ0, 

respectively) are the center of the dimple whose values are chosen such that the dimple is located 

in the middle section of the cylinder. 𝐿1 and 𝜃1 are the parameters that dictate the length (in the 

axial direction) and the width (in the circumferential direction) of the dimple. In this study, the 

value of L1 and θ1 are 0.55λ and 0.55λ/R (Gerasimidis et al. 2018), where λ is the half-wavelength 

of classical axisymmetric buckling mode of the cylindrical shell under axial load, and its value is 

given by Eq. (2) (Timoshenko et al. 1961). 

 

λ =  𝜋√
𝑅𝑡

√12(1−𝜈2)
                                                       (2) 

 

     

 
Figure 1: Finite Element Model of the cylinder along with boundary conditions.    
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Figure 2: Probing of dimple-like the imperfect cylinder.   

 

3. Result and Discussion 

It was established that the prediction is accurate when the probing is done in the middle of the 

imperfection. However, for a real thin shell, the location of imperfections is unknown. Thus, 

evaluating the accuracy of predictions when probing away from the imperfections is essential. 

Moreover, finding a zone of influence i.e., if probing is done in the zone, the prediction will be 

accurate. around the imperfection, is key for developing a framework for non-destructive 

prediction of thin shells’ capacity. 
    

 
 

Figure 3: Plot between the peak probe force Fpmax and the corresponding axial compression Fa for the perfect 

cylinder and the imperfect cylinder when probing is done in the middle of the imperfection. 

 

The primary objective of this study is to find the zone of influence of an imperfection. The zone 

of influence of an imperfection is defined as the area sounding the imperfection such that if probing 

is done in that area, the presence of the imperfection is detected, and prediction of capacity is 

accurate. In this study, we use a dimple with amplitude t as an imperfection, and the zone of 

influence of the imperfection is identified by comparing the probing profiles, i.e., the peak probe 

force Fp
max and the corresponding axial compression Fa. For the comparison of probing profiles, 

first the probing profiles of the perfect cylinder, and the probing profile of imperfect cylinder when 

probe at the middle of imperfection is found. Fig. 3 shows the plot between the peak probe force 

Fp
max and the corresponding axial compression Fa for the perfect cylinder and the imperfect 
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cylinder when probing is done in the middle of imperfection. The actual capacity of the perfect 
cylinder  is 2622 N and  of  the  imperfect  cylinder  is 1362. If the  curves will  be  extended,  they 
intersect Y axis near 2622 N for the perfect cylinder and near 1362 N for the imperfect cylinder. 
This means the probing gives an accurate prediction. Now, we probe away for the imperfection to 
find when the probing profile is following the probing profile of the perfect cylinder and when the 
profile is following the profile of the imperfect cylinder. These comparisons give the clue of the

zone of influence.

3.1 Probing away from the imperfection along circumferential direction
To  understand  how  the  probing  profile  of  the  dimple-like  imperfect  cylinder  is  affected  if  not 
probed at the middle of the dimple, we create plots between the peak probe force Fpmax and the 
corresponding axial compression Fa for 16 probing locations along the circumferential direction. 
The angular distance of 16 locations form the middle of the dimple are: 1.840, 3.680, 5.520, 7.360, 
9.200,  11.040,  12.880,  14.720,  16.560,  18.400,  20.240,  22.080,  23.920,  25.760,  27.600,  and 
29.440.  Fig.  4a  shows the  probing  profiles  for  these  16  locations  along  with  the  profile  of  the 
perfect cylinder and imperfect cylinder when the probe is done in the middle of the dimple. It can 
be seen that two regimes exist in Fig. 4a.

 

 

 
 

Figure 4: a) Probing profiles for these 16 locations along with the profile of the perfect cylinder and imperfect 

cylinder when the probe is done in the middle of the dimple. b) The limit of the zone of influence along the 

circumferential direction. 

 

The first regime is the one when the location of probing is within 11.040 from the middle of the 

dimple, and the probing profiles follow the profile pattern of the imperfect cylinder. For the first 

regime, if the curves are extended, they intercept Y axis near 1362 N, which is the capacity of the 

imperfect cylinder. Thus, probing is able to detect the presence of imperfection and could be used 

to predict the capacity accurately even when probing is done 11.040 away from the middle of the 

dimple. The second regime is the one when the location of probing is outside 11.040 from the 

middle of the dimple, and the probing profiles follow the profile pattern of the perfect cylinder. 

For the second regime, if the curves are extended they intercept the Y axis near 2622 N or more 

than 2622 N. As a result, probing is unable to detect the presence of imperfection and if used for 
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the prediction, the prediction is inaccurate. At angle 11.040, transition takes place from one regime 

to another as shown in Fig. 4a. For small axial compression, the profile for 11.040 follows the 

profile pattern of the perfect cylinder, while for higher imperfection amplitude it is bending toward 

the profile pattern of the imperfect cylinder. 11.040 can be assumed as the limit of the zone of 

influence for the circumferential direction. Fig. 4b shows the contour of the imperfection around 

the dimple along with the extreme of the zone of influence along the circumferential direction.  
 

 

 

 

 

 

   

  

 

 

 

    

  

  

     

  

  

  

 

  

    

 

Figure 5: a) Probing profiles for these 12 locations along with the profile of the perfect cylinder and imperfect

cylinder when the probe is done in the middle of the dimple. b) The limit of the zone of influence along the

circumferential direction.

3.2 Probing away from the imperfection along axial direction
To find how the location of probing along the axial direction affects the probing profile, we probe 
away  from  the  imperfection  along  the  axial  direction  at  12  locations:  Node1,  Node2,  Node3, 
Node4, Node5, Node6, Node7, Node8, Node9, Node10, Node11, and Node12. These locations are 
away from the middle of the dimple in multiple of 0.9386 mm i.e., Node1 is 1X 0.9386 mm, and 
Node 12 is 12X 0.9386 mm away from the middle of the dimple. Fig. 5 shows the probing profiles 
for these 12 locations along with the profile of the perfect cylinder and imperfect cylinder. Here 
again, two regimes exist.

The first regime is the one when the location of probing is less than 5X 0.9386 mm (Node5), and 
the probing profiles follow the profile pattern of the imperfect cylinder. For the first regime, if the 
curves are extended they intercept the Y axis near 1362 N, the capacity of the imperfect cylinder. 
Thus,  probing  is  able  to  detect  the  presence  of  imperfection  and  could  be  used  to  predict  the 
capacity  accurately  even  when  probing  is  done at 5X 0.9386 mm away from the  middle  of the 
dimple. The second regime is the one when the location of probing is outside 5X 0.9386 mm, and 
the probing profiles follow the profile pattern of the perfect cylinder. For the second regime, if the 
curves  are  extended,  they  intercept the  Y  axis  near 2622 N or  more  than 2622 N. As  a  result, 
probing  is  unable  to  detect  the  presence  of  imperfection  and  if  used for  the  prediction,  the 
prediction  is  inaccurate. At  distance 5X 0.9386 mm,  transition  takes  place  from  one  regime  to 
another as shown in Fig. 5. For small axial compression, the profile for 5X 0.9386 mm (Node 5)

follows the profile pattern  of the perfect  cylinder,  while  for  higher  imperfection  amplitude  it  is
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bending toward the profile pattern of the imperfect cylinder. 5X 0.9386 mm can be assumed as the 
limit of the zone of influence for the axial direction. Fig. 5b shows the contour of the imperfection 
around  the  dimple  along  with  the  extreme  of  the  zone  of  influence  along  the  circumferential 
direction and axial direction.

3.3 Probing away from the imperfection along circumferential-axial direction and zone of 
influence

We have established the axial and circumferential limits of the zone of influence in the previous 
subsections. Following the same procedure, we also found the limits of the zone of influence along 
the circumferential-axial direction that is when the probing is away from the imperfection along 
the  diagonal  direction.  Fig.  6  shows  the  limit  of  the  zone  of  influence  of  the  dimple-like 
imperfection.  The  red  crosses  are  the  limit  that  is  actually  found.  The  white  crosses  are  the 
extrapolation of the actual limits. Since the cylinder is symmetrical around the dimple, we only 
need  to  find  the  limits  in  one  quarter.  It  can  be  seen  that  the  zone  of  influence  is a  large  area 
compared to the dimensions of the imperfections. This means that for a cylinder with unknown 
imperfections, we might need to probe more than one location (since we do not know the location 
of  imperfection).  However,  fewer  locations  are  needed as  an  imperfection  has  a  large  zone  of 
influence.

 
 

 
Figure 6: Zone of influence of the dimple with amplitude t. 

 

4. Conclusions 

We found that the zone of influence is a key feature of an imperfection in a thin cylindrical shell. 

If probing is done within the zone of influence, the prediction of the capacity of the shell will be 

accurate. Thus, the capacity prediction of a cylinder with unknown imperfections requires probing 

at multiple locations. Another notable feature of the zone of influence is that its size is significantly 

larger than the size of the imperfection. As a result, the capacity of a cylinder with unknown 

imperfections can be predicating by probing at very few locations. These results are very 

encouraging and suggest that a robust framework can be developed for predicting the capacity of 

the imperfect cylinder without the knowledge of the underline imperfections.   
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