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Abstract
Open-web steel joists are often fabricated from components with relatively high slenderness ratios 
to efficiently support loading. As a result, joists are susceptible to buckling instabilities in the 
webs and the double angle chords. The current SJI design requirements for steel joists require 
the consideration of flexural buckling but exclude any consideration of flexural-torsional buckling 
modes for double angle members, which differs from AISC’s design requirements. This study 
evaluates the underlying SJI assumption that flexural-torsional buckling can be neglected in joist 
design. This paper reports on the theoretical inelastic buckling behavior of double angles and 
the details of the finite element model required for accurately simulating the stability behavior. 
The theoretical investigation applied the methodology behind AISC’s treatment of single angle 
flexural-torsional buckling to verify the expected response for double angles in joist and joist girder 
applications. The results identified several double angle geometries that appear to be susceptible to 
flexural-torsional buckling. Next, finite element models of the joist and joist girders are presented, 
which are validated by making comparisons with previously reported full steel joists experimental 
results including web-to-chord connection variations, support and bracing conditions, and loading 
application. These validation models were able to accurately predict the bending stiffness of the 
joist and the different buckling failure modes of the webs. The results indicated that flexural- 
torsional buckling is not as critical for design as indicated by AISC. This behavior was further
verified using isolated chord models.

1. Introduction
Steel joist and joist girders are economical steel structures that can be used in a variety of applica- 
tions. The efficient use of material often results the use of in slender elements that are susceptible 
to buckling under compression. The current Steel Joist Institute (SJI) Standard Specification for 
K-Series, LH-Series, DLH-Series Open Web Steel Joists and for Joist Girders (SJI 100-2020)
(2020) requires that the design capacity of hot-rolled sections account for flexural and local buck- 
ling effects. These requirements contrast with the current provisions of the American Institute of 
Steel Construction (AISC) Specification for Structural Steel Buildings (2016) which additionally

1Graduate Research Assistant, University of Wisconsin-Madison, <esippel@wisc.edu>
2Professor, Bucknell University, <ziemian@bucknell.edu>
3Assistant Professor and Alain H. Peyrot Fellow, University of Wisconsin-Madison, <hannah.blum@wisc.edu>



fx =

require consideration of flexural-torsional buckling. For non-doubly symmetric members such as 
angles and double angles, flexural-torsional buckling can often lead to significantly lower design 
capacities at short lengths. A study on double angle buckling by Simpson Gumpertz & Heger 
Inc. (2011) noted that the flexural-torsional behavior required by the AISC Specification produced 
overly conservative results at low slenderness ratios while the SJI Specification resulted in some- 
what unconservative capacities for some geometries. Since that study occurred, alterations have 
been made to provisions regarding local buckling reductions and modified slenderness of compos- 
ite members; however, the major global buckling discrepancy between the two Specifications has 
not been addressed. This paper summarizes an investigation into the behavior of double angles 
used for joist and joist girder chords including the theoretical response and a parametric numerical
study of full-scale joists and joist chord segments. The joist modeling validation is also discussed.

2. Theoretical Buckling Capacity

2.1. Background
The foundation of compression member design is elastic buckling that incorporates the global 
limits of flexural, torsional, or combined flexural-torsional buckling and local effects. The critical 
flexural buckling stress about the x-axis, fx, and about the y-axis, fy, are calculated by Eq. 1 and 
Eq. 2, respectively. Torsional buckling occurs due to twisting about the shear center with a critical
torsional buckling stress, fz, determined by Eq. 3;

π2E

(L/rx)
2 (1)

fy =
π2E

(L/ry)
2 (2)

fz =
GJ + π2ECw/L

2

r20A
(3)

where E is the modulus of elasticity, G is the shear modulus, rx =
√
Ix/A and ry =

√
Iy/A

are the radii of gyration about the x- and y- axes, Ix and Iy are the moments of inertia about
the principal x- and the y-axes, A is the cross-sectional area, J is the torsion constant, Cw is the
warping constant, L is the unbraced length, and r0 is the polar radius of gyration about the shear
center which is calculated by Eq. 4;

r20 = r2x + r2y + x2
0 + y20 (4)

where (x0, y0) are the coordinates of the shear center relative to the centroid.

In an arbitrary section, the flexural and torsional buckling modes can interact which introduces
flexural-torsional buckling. This interaction is defined by Eq. 5 where the three roots of the equa-
tion are the critical buckling stresses, fel (Trahair, 1993). When the shear center and centroid are
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coincident, Eq. 5 reduces to uncoupled flexural and torsional buckling modes with the minimum
value controlling the behavior. When the shear center and centroid are not coincident, such as
double angle cross sections, the interaction of buckling modes results in a new lower buckling
stress.

(fel − fx) (fel − fy) (fel − fz) − f 2
el (fel − fy)

x2
0

r20
− f 2

el (fel − fx)
y20
r20

= 0 (5)

Slender cross section elements experience local buckling, which is incorporated into hot-rolled
member design based on the plate buckling stress, fL , given by Eq. 6;

fL =
0.425π2E

12(1− ν2)

(
t

b

)2

(6)

where ν is the Poisson’s ratio, t is the thickness of the angle leg, and b is the leg width. For un-
stiffened elements such as the legs of single and double angles, the failure mode assumes uniform
one-way compression on a pin supported plate with one edge supported and the other unsupported.

Building upon the elastic buckling response, inelastic buckling design per both the SJI Specifica-
tion (SJI, 2020) and the AISC Specification (AISC, 2016) utilizes a tangential buckling approach
based on flexural buckling behavior to convert the limiting elastic buckling stress, Fe, to the criti-
cal buckling stress, Fcr. At low compressive buckling stresses, the behavior remains largely elastic
and can be determined using Eq. 7. When Fe exceeds 4

9
of the yield stress, Fy, inelastic buckling

behavior controls and is represented by Eq. 8.

Fcr = 0.877Fe for
Fy

Fe

> 2.25 (7)

Fcr =
(
0.658Fy/Fe

)
Fy for

Fy

Fe

≤ 2.25 (8)

An alternative method of presenting this relationship would be to use a reduction factor, τ , to
directly calculate the tangential buckling response by modifying E (Galambos, 1991). Rearranging
Eqs. 7 and 8, the Fcr can instead be defined as the limiting elastic buckling capacity times τ given
by Eq. 9.

τ =

0.877 if Fcr

Fy
≤ 0.877/2.25

1
ln(0.658)

Fcr

Fy
ln
(

Fcr

Fy

)
otherwise

(9)

Lastly, a modification factor that accounts for strength reduction due to local buckling is included.
The current SJI Specification and the prior AISC Specification (AISC, 2010) utilized a single
slenderness reduction factor, Q, according to Eq. 10;
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where λe is the slenderness of the angle leg, b/t.

For double angles, the single lowest Q factor associated with any unstiffened element is used to
uniformly reduce the capacity of the entire section. This local buckling limitation is incorporated
by replacing Fy in Eq. 7, 8, and 9 with QFy and the remaining calculations are completed as
normal. The 2016 AISC Specification introduced a different approach requiring the original Fcr

to act over an effective area of the cross section based on plate buckling. While the different local
buckling provisions alter the final capacities, the impact of this variation is not discussed in further
detail in this paper because the focus of this study is on the current SJI requirements.

The design buckling calculations have been limited to flexural buckling since it is the foundation
of compression member design. The current SJI Specification allows for the effects of flexural-
torsional buckling to be neglected for double and single angles, and, as a result, only flexural
buckling need be considered. The AISC Specification incorporates a similar exception for single
angles, but requires the consideration of flexural-torsional buckling for double angles. The capacity
is conservatively calculated by using the minimum elastic buckling response considering flexural
and flexural-torsional buckling modes using Eq. 5 and applies the same flexural buckling reduction
shown in Eq. 7 and 8. However, this approach does not account for the strength associated with the
shear stiffness as identified in previous testing and numerical studies (Galambos, 1991; Galambos,
1963; Kitipornchai and Lee, 1986; Trahair and Kitipornchai, 1972). Unlike the softening longi-
tudinal behavior, shear stiffness has been found to remain effectively constant until full yield of
the section, which can result in higher and more realistic torsional buckling capacities. The in-
elastic shear and longitudinal responses can be combined by modifying Eq. 5 with the appropriate
tangential stiffness reduction factor, τ for the longitudinal behavior and τG for the shear behav-
ior, resulting in Eq. 11 where the minimum solution is the inelastic critical buckling stress, fin.
Previous work by Galambos (1991) determined that accounting for the increased stiffness meant
flexural-torsional buckling was unlikely to control the design of single angles when accounting for
the interaction of flexural buckling and local buckling. That study also determined that some dou-
ble angles were susceptible to flexural-torsional buckling and recommended continuing to consider
the relevant provisions for the design of double angles.

(fin − fxτ) (fin − fyτ)

(
fin −

τGGJ + τπ2ECw/L
2

r20

)
−f 2

in (fin − fyτ)
x2
0

r20
− f 2

in (fin − fxτ)
y20
r20

= 0

(11)

4



b 1"

b

t

Figure 1: Typical double angle chord geometry

Table 1: Angle dimensions considered

Leg (in) Thickness (in)
1.25 0.1880.1250.1150.109
1.5 0.250.1880.170.1550.1410.1370.1230.1150.109

1.75 0.250.1880.170.1550.1430.1250.115
2 0.230.2160.2050.1880.1760.1630.1560.1430.125

2 (cont.) 0.3130.2810.250.248
2.5 0.3130.280.250.230.2120.188
3 0.3750.3130.290.2810.250.2270.188

3.5 0.3750.3440.3130.287
4 0.50.4380.3750.3440.3130.25
5 0.50.438
6 10.8750.750.6250.5630.50.438
8 1.12510.750.6250.5460.5

2.2. Inelastic Buckling Study
Galambos’s (1991) recommendation for double angles covered a wide array of geometries includ- 
ing both unequal- and equal-leg sections, multiple spacings between the vertical legs of the angles, 
and different connection methods. For this study, a more limited configuration was considered to 
investigate the impact of flexural-torsional behavior in joist and joist girder chords. Only equal-leg 
double angles spaced with one inch between the vertical legs as shown in Fig. 1 were consid- 
ered. Table 1 summarizes the chord double angle dimensions evaluated for this study, which are 
representative of joist designs per SJI.

This flexural-torsional buckling study included variations in the shear stiffness via two values for
τG and in the warping stiffness of double angles via three values for Cw. In line with previous 
research (Galambos, 1991; Kitipornchai and Lee, 1986; Neal, 1950), an upper limit of τG = 1.0
was used to capture the full shear stiffness of the section as minimal reduction was observed. A 
reduction was estimated as τG = 0.877 to account for imperfections and residual stresses based 
on critical elastic flexural buckling. The minimum value for Cw was defined based on AISC’s
(AISC, 2016) conservative design recommendation that Cw of double angles can be taken as 0 and 
the shear center, Slow, is positioned along the axis of symmetry at the middle of the horizontal 
flanges similar to a tee section as shown in Fig. 2. An alternative conservative recommendation by 
the Canadian Institute of Steel Construction (CISC, 2002) uses the same shear center position but
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Figure 2: Assumed double angle warping behavior (a) AISC/CISC (b) Est. upper bound

references a Cw equal to twice that of the single angle. Limited information was available on the 
composite twist response of double angles; therefore, an estimate of a fully composite behavior 
was determined using a thin-walled approximation by assuming a connection between the angle 
heels with no thickness which resulted in a new shear center, Shigh, and a significantly increased
Cw, by more than a factor of 100 in some configurations. These three Cw values were considered 
to investigate the impact of warping stiffness and are identified as Cw = 0, Low Cw, and High Cw, 
respectively.

For each alternative Cw, four inelastic buckling curves were determined for lengths up to 200 times 
the minimum radius of gyration. The upper bound was determined considering flexural buckling 
effects in line with the current SJI Specification and labeled “FB”. The lower bound for capacity 
was determined considering both flexural and torsional buckling effects aligned with the AISC 
Specification and labeled “FTB”. Two intermediate solutions were found using the τG factors 
discussed above to capture the increased shear stiffness in torsional buckling. The results labeled
“τG = 1.0” account for the maximum increase in strength while the results labeled “τG = 0.877” 
include a small reduction to account for imperfections. All calculations included local buckling 
reductions based on the SJI provisions, which employ the previously mentioned Q-factor.

The study identified multiple double angle configurations expected to be controlled by flexural 
buckling over flexural-torsional buckling. Compact sections, such as the 2-L8”x8”x1” shown in 
Fig. 3, were controlled by flexural buckling about the x-axis once accounting for the increased 
shear stiffness. However, this trend was not absolute and flexural-torsional buckling became the 
controlling mechanism as the legs became more slender as depicted in Fig. 4 and Fig. 5. Account- 
ing for a non-zero Cw significantly increased the capacity in flexural-torsional buckling, especially 
when considering a composite response. Despite the increases indicated, multiple double angle 
cross sections were still controlled by flexural-torsional buckling with significantly lower capaci- 
ties. This result does not align with the well-established history of existing joist performance and 
various production testing that indicate joists and joist girders are adequately designed by only 
considering flexural buckling. As a consequence, further investigation using advanced finite el- 
ement models was implemented to validate the theoretical results by evaluating systems where
flexural-torsional buckling was expected to control the response.

3. Joist finite element modeling validation
The joist finite element modeling procedure was validated using previous work by Yost et al.
(2004; 2006) that tested a series of 16-foot (4.88 m) long, 18 inch (460 mm) and 30 inch (760 
mm) deep steel joists until failure via web member buckling. The joists were constructed with 
2-L2”x2”x0.125” double angle chords, crimped end L1”x1”x0.125” angle webs, and an end 7/8-

6



Figure 3: Inelastic buckling of a 2-L8”x8”x1” controlled by flexural buckling

Figure 4: Inelastic buckling of a 2-L3”x3”x0.227” with limited critical flexural-torsional buckling
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Figure 5: Inelastic buckling of a 2-L2”x2”x0.125” with significant flexural-torsional buckling

inch (22 mm) solid rod diagonal. The joists were both laterally supported and loaded along the top
chord at the panel points.

Advanced finite element models of the full joist models were developed in Abaqus (Dassault Sys-
tems, 2015) including multiple material models, connection methods, and imperfections. All struc-
tural angles were modeled using S4R shell elements while the rod sections were represented by
C3D8R solid elements. The joist was evaluated using 4 different material models shown in Fig.
6. All models considered E = 29,000 ksi (200 GPa) and Fy = 50 ksi (345 MPa). The base mate-
rial model was an elastic-plastic relationship following Eurocode 3 with a post yield modulus of
elasticity equal to E/10000 (EN 1993-1-5, 2009). Another Eurocode 3 material model was im-
plemented considering linear strain-hardening that began immediately after yield with a stiffness
of E/100 until ultimate stress was reached at 65 ksi (448 MPa). The third material model was a
trilinear approach accounting for an initial perfect plasticity after yield. Strain-hardening started
at 10 times the yield strain and was approximated by a linear transition to an ultimate strain of
0.15 in/in and ultimate stress of 65 ksi (448 MPa), which is an effective stiffness of E/267. The
fourth and final material model was a realistic reference stress-strain curve for A992-50 taken from
literature (ASM International, 2002).

The flare bevel weld connecting the solid rod web to the double angle chord was modeled using a
surface to surface tie over the approximate welded area as depicted in Fig. 7. The web connections
required consideration of the crimped geometry of the web members as shown in Fig. 8 and
modeling of the fillet weld, Fig. 9. The fillet weld was modeled as either: (1) the entire face of
the welded region was treated as bonded to the chord (the red area) or (2) only the edge along
the physical fillet weld was connected (the blue line). Additionally, each connection alternative
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Figure 10: Load-displacements results of validation modeling. (a) 18 in. joist (b) 30 in. joist

Table 2: Ultimate load variation due to connection and material models

Maximum Applied Load, P, (kip)
Joist Size 18 in. Deep 30 in. Deep

Yost et al. (2006) 2.35 2.61 2.70 2.81 2.88 3.35
Connection Model Edge Face Edge + C Face + C Edge Face Edge + C Face + C

M
at

.M
od

el Elastic-Plastic 2.25 2.44 2.39 2.69 3.02 3.25 3.30 3.47
Simplified Str.-Hard. 2.20 2.46 2.41 2.68 3.03 3.27 3.30 3.47
Tri-Linear Str.-Hard. 2.32 2.50 2.46 2.72 3.05 3.36 3.33 3.46
Realistic 2.28 2.48 2.42 2.68 3.03 3.29 3.30 3.47

was modeled as excluding or including contact between the members resulting in four connection
models (the purple area plus the red area for edge connection).

Imperfections were applied to the joist in a half wavelength, sinusoidal distribution along the un-
deformed length of webs and to the chords between the panel points. Various combinations of
in-plane translation, out-of-plane translation, and a rotation were considered in the validation pro-
cess incorporating translations of L/1000, L/750, and L/250 and rotations of 1/100◦ and 1/50◦

with a limited selection discussed in this paper. Elastic eigenbuckling imperfections were not im-
plemented as the eigenbuckling results provided irrelevant displacements due to the unsupported
bottom chord.

The failure loads and load-deflection information from Yost et al. (2004; 2006) was used to validate
the choice of material and connection model for the joist. When including a L/1000 out-of-plane
imperfection, all combinations of material and connection models captured a similar joist stiffness
until approaching failure. Only minimal increases in stiffness occurred due to utilizing the face
connection or considering contact. With regard to the elastic-plastic material model, the compu-
tational results were found to be in agreement with the softest of the 18 inch deep joists and the
stiffest of the 30 inch deep joists as shown in Fig. 10(a) and 10(b), respectively.

The ultimate load, summarized in Table 2, and failure mode of the webs determined using the com-
putational results were in agreement with the experimental behavior. The 18 inch deep steel joist
failed in a twisting and bulging mode as shown in Fig. 11. The models consistently failed near the
web mid-height while the experimental failure was closer to the crimped geometry transition. It is

10



Figure 11: Twisting and bulging of 18 in. deep joist diagonal at failure. (a) Model (b) Yost et al. (2006)

Figure 12: Flexural buckling of 30 in. deep joist diagonal at failure. (a) Model (b) Yost et al. (2006)

hypothesized that the different failure position is a consequence of the modeling assumptions in- 
cluding (1) the largest imperfections at midspan and (2) not accounting for residual stresses due to 
the crimping process. The 30 inch deep steel joist was controlled by an in-plane flexural buckling 
failure mode depicted in Fig. 12. The buckled geometry shown resulted from the edge connection 
without contact model and the elastic-plastic material relationship. While all connection mod- 
els resulted in appropriate failure loads, the exclusion of contact captured similar failure modes, 
provided a more conservative result, and improved run times. It was decided not to use the face 
connection alternative as it was uncertain how the greater bonded area would correlate to the edge 
connection alternative. The larger web sizes would provide a sizeable area that would result in a 
substantially stiffer connection than the edge connection only. Furthermore, the buckled geometry 
of 30 inch deep joist including contact captured an unexpected in-plane downwards flexural buck- 
ling failure, which was unlikely to occur. With respect to the material models, minimal benefits 
were observed due to strain-hardening, which is neglected in typical steel member design and in- 
elastic modeling provisions per AISC (2016). Therefore, the edge connection without contact and
the elastic-plastic material relationship were used for the remainder of the study.

4. Full joist chord study
A 50-foot long, 30 inch deep joist, as shown in Fig. 13 with members in Table 3, was subjected 
to uniform uplift to investigate buckling of the bottom chord including continuity and connection 
effects. The webs were sized to not fail in buckling prior to the chords. Table 4 lists the seven
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Figure 13: Base geometry of full joist models

Table 3: Joist member cross sections

Label Member Size
2-L1-3/4”x1-3/4”x0.170”TC

See Table 4BC
7/8” Rod + L2-1/2”x2-1/2”x3/16”W1

CC1-1/4”x1-1/4”x0.188”W2
CC1-1/2”x1-1/2”x0.25”W3

CC1-1/2”x1-1/2”x0.138”W4
CC1-1/4”x1-1/4”x0.125”W5-W12

L1”x1”x0.109”V1-V6

different bottom chord double angle cross sections considered in the study. All chord sizes were
expected to fail by flexural-torsional buckling at a nominal 4-foot unbraced length.

4.1. Modeling
The joists were modeled as a simply-supported span with the top chord laterally supported on one 
chord angle at 12 inch o.c. and the bottom chord braced at all panel points. The bottom chord 
bracing was achieved by incorporating a horizontal bracing angle, which was laterally supported 
at the ends. A uniformly distributed load was applied over the entire length of the joist top chord 
via equal point loads on the interior 25% of the cross section as shown in Fig. 14.

Based on the results from the validation study in Section 3., the double angle, single angle, and 
crimped angle members were modeled with SR4 shell elements and the solid rod webs were mod- 
eled using C3D8R solid elements. The web to chord connections utilized the edge connection 
model without contact to simulate the fillet welds. The double angle chords were connected using 
vertical segments of 7/8-inch solid rods modeled similar to the end diagonal members as shown in
Fig. 15.

The joists were modeled as nominal 50 ksi (345 MPa) yield steel with an elastic-plastic relationship
(Fig. 6). Imperfections were applied to the structures in a sinusoidal pattern to each chord with

Table 4: Joist bottom chord cross sections evaluated with advanced modeling

Leg (in) Thickness (in)
2 0.0940.1090.1150.125

1.75 0.1090.1150.125
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Figure 14: Loading on the top chord cross section
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Figure 15: Tie between angle chord details

a half wavelength between the panel points incorporating a L/1000 displacement out-of-plane, 
a L/1000 displacement in-plane, and a 1◦ rotation. Each model was evaluated in a Riks load-
controlled analysis to allow for a consistent distribution of load.

4.2. Results
The joist chords exhibited a number of complex displacement patterns at the maximum loading 
noted in Table 5. The joist chord capacity was consistently observed to be greater than the SJI 
Specification’s flexural buckling limit. The predominant deformation of the chord was in the verti- 
cal direction due to the span deflection and twisting of the chord angles as depicted in Fig. 16. The 
twisting of the chords included a combination of global and local twisting effects that made obser- 
vations of post-buckling behavior difficult. The complex interaction was confirmed by evaluating 
the elastic buckling response, which captured five or more buckling modes within 5% of the first 
mode for each of the 2-in leg angles. Each mode indicated a combination of competing individual 
angle and composite chord lateral-torsional buckling shapes, all primarily located in the middle 
three spans. To validate the calculated capacities and to further investigate the complex buckling 
mode interactions, a chord buckling study was conducted.

Table 5: Full joist modeling results

Member Model (k) SJI Design (k) Model/SJI

1.2230.236.872-L2”x2”x0.125”
1.1926.932.092-L2”x2”x0.115”
1.2223.428.552-L2”x2”x0.109”
1.0319.419.902-L2”x2”x0.094”
1.2125.130.422-L1.75”x1.75”x0.125”
1.2422.628.032-L1.75”x1.75”x0.115”
1.3120.126.332-L1.75”x1.75”x0.109”
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Figure 16: 2-L2”x2”x0.094” joist chord at failure. (a) Lateral displacement of full model. (b) Isometric view of bottom
chord. (c) Angled end view of bottom chord.

5. Chord Buckling Study
A simplified double angle chord segment buckling study was completed to validate the full joist 
modeling results while considering both elastic and inelastic buckling. The seven bottom chord 
cross sections from Table 4 were evaluated with an effective length, L, of 48 inches with both a 
pinned-pinned and fixed-fixed boundary condition. This portion of the study varied the number of 
ties between the chords to account for differences in the composite behavior. While one connection 
between the double angle chords is typically adequate to meet the minimum requirements of a 
composite member per the SJI Specification, independent twisting of the individual angles was 
observed in the full joist investigation. The additional ties were included to capture a more fully
composite response.

5.1. Modeling
The double angle chord segment models were based on the same modeling provisions as discussed 
in Section 4.1. using shell elements for the angles and solid elements for the ties. Each cross sec- 
tion was evaluated with 0, 1, 3, 7, 15, and 23 ties evenly spaced along the length of the chords. The 
first subset considered a simply supported boundary condition for bending about both the weak and 
strong axis with a length, L. The pinned boundary condition utilized a rigid tie between a reference 
node at the centroid and all end nodes on the double angle as shown in Fig 17(a). This node was 
then subjected to axial load to apply uniform compression to each member. A consequence of this 
modeling approach was that the end of the members were fixed for warping resulting in a different 
theoretical effective length in flexural and torsional buckling. As an alternative, a second subset 
with fixed supports was considered where all end nodes of the member were individually fully 
restrained as shown in Fig 17(b) to have the same effective length for flexural and torsional buck- 
ling. This model was evaluated with a length of 2L to keep the same nominal effective length for 
flexural buckling as the baseline configuration. The fixed support model was loaded by providing a 
uniform axial displacement across the section. Each model was evaluated for elastic eigenbuckling 
and then inelastic buckling using the iterative-incremental Riks loading method. The first elastic
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Figure 18: Individual angle flexural-torsional buckling displacement

buckling mode, regardless of the buckled shape, was used as an initial imperfection for the inelastic
analyses with a consistent L/1000 imperfection for all models.

5.2. Elastic behavior
The elastic buckling investigation depicted a variety of flexural, flexural-torsional, and local buck- 
ling responses. Local buckling was observed as either twisting deformations in both flanges of 
one chord angle, which was classified as individual angles exhibiting flexural-torsional buckling 
as shown in Fig. 18, or different deformations in the horizontal and vertical flanges resulting in 
the a non-90◦ angle between the flanges, which was classified as a distortional buckling mode as 
depicted in Fig. 19. This change in local buckling was not driven solely by consideration of higher 
buckling modes, but instead by the amount of tie connectivity between the chords. Considering 
the results for the 2-L2”x2”x0.125” in Table 6 and 7, distortional buckling behavior was largely 
limited to configurations with a significant number of connections between the angle members. 
For most practical joist applications, local buckling of the double angles resulted in single angle 
flexural-torsional buckling between the ties. Global flexural-torsional buckling was only identified 
when the ties rotated along with the angles.

It was anticipated that the advanced finite element modeling would capture the same global buck- 
ling behavior described in Section 2. with additional local effects. For example, it was estimated
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Figure 19: Distortional buckling displacement

Table 6: Elastic buckling of 2-L2”x2”x0.125” chord segment with simple support

Mode Ties
0 1 3 7 15 23

1 Pcr 31.7 k 39.5 k 44.4 k 45.9 k 46.3 k 46.5 k
Shape g-FB+i-FTB g-FB+i-FTB g-FB g-FB g-FB g-FB

2 Pcr 40.1 k 43.8 k 51.5 k 71.3 k 95.8 k 98.9 k
Shape g-FTB i-FTB i-FTB i-FTB D D

3 Pcr 42.6 k 44.5 k 51.9 k 71.9 k 95.8 k 99.0 k
Shape i-FTB i-FTB i-FTB i-FTB D D

4 Pcr 42.6 k 44.9 k 52.3 k 72.6 k 97.5 k 100.7 k
Shape i-FTB i-FTB i-FTB i-FTB D D

5 Pcr 44.5 k 46.3 k 52.5 k 73.1 k 97.6 k 100.8 k
Shape i-FTB g-FTB i-FTB i-FTB D D

FB = Flexural Buckling; FTB = Flexural-Torsional Buckling; D = Distortional
g = Global/composite response; i = Individual angle response

Table 7: Elastic buckling of 2-L2”x2”x0.125” chord segment with fixed support

Mode Ties
0 1 3 7 15 23

1 Pcr 18.8 k 32.7 k 39.2 k 44.4 k 45.8 k 46.0 k
Shape i-FB g-FTB g-FTB g-FB g-FB g-FB

2 Pcr 18.8 k 38.6 k 39.3 k 47.5k 65.3 k 84.5 k
Shape i-FB i-FTB g-FB+i-FTB g-FTB g-FTB g-FTB

3 Pcr 33.4 k 38.8 k 43.1 k 51.1 k 70.6 k 89.7 k
Shape i-FTB g-FB+i-FTB g-FTB i-FTB i-FTB g-FB

4 Pcr 33.4 k 39.8 k 43.3 k 51.3 k 70.8 k 90.7 k
Shape i-FTB g-FTB i-FTB i-FTB i-FTB D

5 Pcr 38.1 k 39.8 k 43.7 k 51.5 k 71.1 k 90.8 k
Shape i-FB i-FTB g-FTB i-FTB i-FTB D

FB = Flexural Buckling; FTB = Flexural-Torsional Buckling; D = Distortional
g = Global/composite response; i = Individual angle response
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Figure 20: Influence of composite behavior on Je of double angles

that the 2-L2”x2”x0.125” chord would be controlled by flexural-torsional buckling at approxi- 
mately 26 kips, which was less than the plate buckling limit. The advanced modeling depicted 
similar flexural-torsional behaviors with ties spaced at L/2, but at a higher load. Additional ties 
caused the strength to further increase for all buckling modes, but at different rates. Flexural buck- 
ling exhibited initial gains due to composite behavior, but an excessive number of ties produced a 
negligible increase in strength. The torsional behavior of the chord continued to rapidly increase 
resulting in individual chord angle local buckling to be replaced with a local-distortional response 
and global flexural-torsional buckling to be significantly greater than the flexural limit. This in- 
crease in flexural-torsional buckling was attributed to an increase in torsional stiffness which was 
confirmed by directly evaluating the models in torsion to determine an effective torsional stiffness,
Je, assuming pure torsion. A single tie was observed to increase the base model stiffness by over
20% as shown in Fig. 20.

5.3. Inelastic behavior
The iterative-incremental inelastic buckling analysis depicted the double angle cross sections pri- 
marily failing in flexural buckling that was initiated by the local twisting of the individual angle 
sections. The buckling strength increased with additional ties, which restrained the twist of in- 
dividual chords up to a limit where distortion of the flange preceded the onset of buckling. To 
directly compare the results of the simplified chord models with the full joist models, the number 
of ties in the simplified chord models was limited to practical numbers such as ties spaced at L/2
and L/4. It was found that the buckling capacity results, presented in Table 8, were in agreement 
between the two models for both pinned and fixed boundary conditions. The design limits of both 
flexural and flexural-torsional buckling were found to underestimate the modeled strength. As the 
section slenderness increased, the conservatism of the flexural buckling prediction was reduced.

It was expected that the increased torsional stiffness would result in an increased ultimate load for 
all modeling configurations; however, it was still anticipated that flexural-torsional buckling would 
occur when considering equal effective lengths for all buckling modes. As noted earlier, the pinned 
chord model has a reduced effective length for flexural-torsional buckling, which was adequate to 
change the anticipated failure mode to flexural buckling. Considering the similar buckling capaci- 
ties from all modeling approaches and the clear flexural buckling response of the simplified chord 
models, it was concluded that all configurations could provide additional torsional restraint. For
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Table 8: Buckling Capacity Comparison

Section
pression (kip)Maximum Model Com Design* (kip)

Ties at L/2 Ties at L/4 FB FTBJoist Pinned Fixed Pinned Fixed
2-L2”x2”x0.125” 36.734.436.7 35.636.4 24.128.3
2-L2”x2”x0.115” 30.83132.1 30.733.3 20.425.2
2-L2”x2”x0.109” 27.325.728.5 26.625.3 18.323.3
2-L2”x2”x0.094” 19.218.519.9 21.518.3 13.418.4

2-L1.75”x1.75”x0.125” 25.52530.2 26.126.3 23.022.8
2-L1.75”x1.75”x0.115” 23.322.828.0 24.124.3 19.520.6
2-L1.75”x1.75”x0.109” 22.021.526.3 22.923 17.519.3
* Effective length factors taken as k=1 for all calculations

the joist models and fixed chord models, the continuity of the chord and connection stiffness was 
theorized to provide additional warping restraint that would normally be conservatively ignored in
design.

6. Discussion
The flexural-torsional buckling provisions within the current AISC Specification appear to not 
take full advantage of known available strength. The conservative approach of utilizing the same 
elastic-inelastic relationship for flexural and torsional behavior, however, is straight forward. Nev- 
ertheless, the capacity of multiple double angle cross sections was observed to be significantly 
underestimated, as shown in Fig. 3. This reduction is compounded with the recommendation 
to ignore the Cw of double angles. Without detailed recommendations for determining torsional 
stiffness for composite members, treating double angles with a warping stiffness and shear center 
position similar to tee sections appears reasonable for a conservative design. However, this ig- 
nores a significant contribution of stiffness, especially when the two angles can act as a composite 
member. The consideration of both parameters, increased shear stiffness and composite behavior, 
reduces the likelihood of flexural-torsional buckling controlling the member capacity.

The increased torsional stiffness of the double angles considered in this study resulted in flexural 
buckling controlling the design behavior. However, that does not mean torsional behavior is not an 
important component of the limit state. All modeled cross sections were noncompact or slender, 
which requires the incorporation of local buckling reductions. This local buckling would equate to 
the flexural-torsional buckling mode of each angle as an independent member (Rasmussen, 2003;
Behzadi-Sofiani et al., 2021). For single angles, the flexural-torsional buckling condition does not 
need to be checked as the local buckling criteria adequately reduces the flexural buckling capacity 
to address torsional concerns (Galambos, 1991; Rasmussen, 2003), and hence avoids penalizing 
the capacity of the member twice for the same effect. For double angles, standard engineering 
practice currently accounts for minimal torsional stiffness benefits, but applies the full penalty of 
non-compact sections. As a result, designs according to the SJI Specification are only reduced 
due to local buckling while designs according to the AISC Specification are reduced due to both 
global and local buckling. Determining an appropriate balance of these factors will be critical to 
establishing a uniform design approach for all double angle configurations.
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7. Conclusions
This paper summarizes a study on flexural-torsional buckling in double angle cross sections for 
joist and joist girder chords. An inelastic buckling investigation found that while flexural-torsional 
buckling is not as critical as treated by current AISC design procedures, flexural-torsional buckling 
is theoretically important for a number of double angle cross sections due to limited nominal 
torsional stiffness. A series of double angles were evaluated using full joist finite element models 
that were expected to fail in flexural-torsional buckling. The resulting analysis found that these 
chords were buckling at or above the SJI flexural buckling limits. The chord deformations were 
observed to have a combination of local behaviors interacting with the global buckling modes.

An isolated chord segment buckling study was completed to validate the joist study results. Elas- 
tic buckling evaluations indicated that local angle behavior between ties was a significant factor 
in defining the overall deformation of the cross sections. The resulting capacities were greater 
than the expected theoretical design-based results, while depicting both global and individual an- 
gle flexural-torsional buckling. This behavior was due to increased composite torsional stiffness 
confirmed by additional modeling, but often ignored in design. The increased torsional stiffness 
caused the inelastic buckling capacity to be controlled by flexural buckling with local twisting of 
the individual angles.

The preliminary results of this study indicate that the SJI approach of only considering flexu- 
ral buckling with local buckling reductions seems to be an appropriate design approach for joist 
chords. The joist chord configuration results in an increased torsional stiffness section property 
in addition to increased torsional restraint due to continuity and web members. All these factors 
cause global flexural-torsional buckling behavior to be less significant than the current AISC Spec- 
ification design approach. The individual twisting of angles cannot be eliminated, but this behavior 
is accounted for in the local buckling reductions. Further work is in progress to evaluate additional
chord dimensions and joist configurations to verify these behaviors in larger double angle sections.
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