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Buckling analysis of castellated steel beams using beam elements
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Abstract

A study is undertaken to determine elastic critical moment of castellated beams. A beam element 
with  warping  degree  of  freedom  is  developed to study the  effects  of  castellation  on lateral 
tortional buckling. The concept of minimization of the total potential energy is used to derive the 
stiffness  and  geometric  stiffness  matrices. Section  properties  are  calculated  for  the  openings 
whereas  the  whole  cross  section  properties  are  used  for  the  remaining  regions.  Using  this 
formulation, simply  supported  and  cantilever  columns  and  beam-columns are analyzed various 
loadings. It is found that the derived beam element generates comparable results with those from 
the literature. It is well known that if the aspect ratios of the holes are similar the LTB behavior 
will  not  be  different.  However,  the  present  formulation  can  be  used  to  study  LTB  of 
castellations with small and large openings.

1. Introduction

Castellated beams and beams with web openings enhance the strength to weight ratios and are no 
hindrance  to  utilities. In  spite  of  all  the  pros, the higher depth of  the  cross  section  for  long 
unsupported,  under-construction  beam  renders  it  weaker  in  lateral  torsional  buckling.  The  first 
step  in  the  design  of  these  members  is  the  determination  of  the  elastic  critical  moment  (Mcr). 
Current  practice  is like that  for  plain  webbed  sections,  with  modified  section  properties. 
Properties of the cross section at the center of the holes is assumed throughout the longitudinal 
direction.  This  is  called  the  2T  approach. This  method  is  easy  to use  but underestimates  the 
buckling moment because of reduction in the torsional rigidity of the cross section. For accurate 
determination,  numerical  methods  are  used for  which  commercial  packages  are  available. 
Generally,  to  study for  lateral  torsional  buckling,  shell  elements  are  used.  But,  in  this  study,  a 
beam  element  is  developed  for  buckling  analysis  of  members,  which easily  incorporates  the 
different cross-sectional details of castellated members and gives accurate results.

A review of. literature reveals the trend of study of buckling of castellated members. Researchers

(Sonck and Belis  2017) have  performed  experiments  on  doubly  symmetric  hot  rolled  simply 
supported, fork boundary conditions, under uniform bending and applied numerical methods for 
parametric studies using linear buckling analysis (LBA) to calculate Mcr and nonlinear geometric 
and material analysis with imperfections (GMNIA) for the comparison with experimental values,
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during which residual stresses were measured (Sonck, Van Impe and Belis 2014). These 

exercises were repeated for cellular beams (Sonck and Belis 2015). Similar studies were carried 

out for axially loaded columns (Sonck and Belis 2016). They have proposed modified torsion 

constant values, which when used with the 2T approach, result in Mcr values comparable with the 

best fit curve results from their numerical studies. 

 

A finite element program was developed to analyze for deflection and stresses in castellated 

beams using plane stress elements (Srimani and Das 1978). Analytical formulation for the 

critical load of a centrally loaded hexagonal castellated column with web shear deformations 

(Yuan, Kim and Li 2014) was derived. 

 

Based on this literature review, it is identified that either the 2T approach is utilized for Mcr 

calculations, or LBA using commercial software like ABAQUS. Instead of laborious work 

needed for the earlier mentioned methods, a simple beam element is developed in this paper to 

calculate Mcr (McGuire, Gallagher and Ziemian 2015). 

 

2. Development of finite element  
 

 
Figure 1: Sign convention for nodal dofs 

 

2.1 FEM formulation 

Strain energy and potential energy together form the total potential energy (TPE) expression. 

Bifurcation buckling occurs when the system reaches neutral equilibrium. Using the theory of 

minimum potential energy, this condition is satisfied when the second order derivative of TPE 

with respect to the generalized coordinates is equated to zero as shown in Eq. 1. Pre-buckling 

deformations are neglected. Hence, only the out-of-plane generalized coordinates are used for the 

energy equation. Warping degrees of freedom (dofs) are also included in this formulation. Also, 

unsymmetric cross sections can be solved. The sign convention is shown in the Fig. 1. 

 
  (1) 

This work employs the standard cubic interpolation functions  , Eq. 2, for strain displacement 

relation (Eqs. 3 and 4) for out-of-plane dofs. Here i is the initial node and j is the final node of 

each element. 

 (2) 
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 (3) 

 (4) 

Embedding Eqs. 2, 3 and 4 in Eq. 1 and applying numerical integration, the local stiffness 

matrices are obtained. This approach is in line with Roberts 2004. The local to global 

transformation is applied which yields the global stiffness matrix (Eq. 5) and geometric stiffness 

matrix (Eq. 6) corresponding to the rearranged dofs . 

This helps to assemble the elements together to form the member. Boundary conditions are 

applied to the structure to produce partitioned global matrices for restrained and free dofs. The 

partitioned matrices pertaining to free dof are used to solve for the smallest generalized eigen 

value of Eq. 8. These eigen values multiplied by the applied load gives Mcr values. 

 

 (5) 

 (6) 

  (7) 

  (8) 
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Mathematica (Wolfram Research Inc. 2020) is used for the numerical integration, assembly of 

global stiffness matrices, eigen value solution and the overall development of the present 

formulation. Appropriate inputs regarding the nodes, node connectivity, geometric and section 

properties are fed into the program and the output is easily generated.  

 

2.2 Modeling details  

Mesh convergence study for a plain webbed beam shows that four elements are enough to get 

reasonably good prediction of LTB capacity, but for castellated members, an element is required 

for every cross-section change. Non uniform meshing helps to capture the section properties 

better as shown in Fig. 3. For symmetric loading and boundary conditions, only half length of the 

member is modelled and appropriate boundary conditions are applied at the centre of the 

members. For a simply supported member with fork supports for torsion, twist and out of plane 

displacement are restrained at the end and at the middle length, out of plane rotation and warping 

dofs are equated to zero. 

  (9) 

A statistical mean value of 205 GPA for Young’s modulus was adopted. 

 

2.3 Geometric and Section Properties  
Table 1: Nominal dimensions of castellated members 

 bf tf hw tw Length No. of 

holes  

 (mm) (mm) (mm) (mm) (m) (n) 

Nominal 

dimensions 

common for 

each specimen  

82 7.4 205.8 5.4 

 

 

3.15 

3.99 

6.09 

8.19  

15 

19 

29 

39 

 
Figure 2: Geometric details  

 
Figure 3: Geometric details for non-uniform mesh  
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This study involves castellated members derived from IPE160 parent section. The geometric 

details are shown in Fig. 2. Three shapes of the holes are considered for this study. Section 

properties are calculated using CUFSM 4 (Schafer and Ádány 2006) and are listed in Table 2. 

For elements having non uniform cross sections, the properties are calculated at the center of 

such elements.  
 

 
Table 2: Section properties of castellated members 

Castellation 

shape 

Location hT A x103 Iy x105
 J x104 J x104 

Ref 

Iω x109
 

  (mm) (mm2) (mm4) (mm4) (mm4) (mm6) 

Hexagonal A-A - 2.4 6.8 3.3 3.0 7.7 

 B-B 80.0 2.0 6.8 3.0 3.0 7.7 

 C-C 49.7 1.7 6.8 2.7 3.0 7.7 

Circular A-A - 2.4 6.8 3.3 2.9 7.7 

 B-B 64 1.9 6.8 2.8 2.9 7.7 

 C-C 40.3 1.6 6.8 2.6 2.9 7.7 

Rectangular  A-A - 2.4 6.8 3.3 2.9 7.7 

 B-B 49.7 1.7 6.8 2.7 2.9 7.7 

 C-C 49.7 1.7 6.8 2.7 2.9 7.7 

 

3. Results  

3.1 Simply supported beam subjected to uniform moment  

The behavior is like the whole beam. As mentioned in the beginning, different shapes of 

castellation have little influence on the Mcr values. The lower bound results are for the 2T 

approach, followed by rectangular, circular and hexagonal castellation. Though the error with 

respect to the 2T approach shows up to 6% deviation, comparison with Sonck and Belis 2017 

show good match with the current formulation (Table 3). 

 
Table 3: Comparison of results for castellated beams 

Castellation 

shape 

L McrFEM 

present 

Mcr2T  Error1 

 

McrRef  Error2 

 

 (m) (kNm) (kNm) (%) (kNm) (%) 

Hexagonal 3.15 23.4 22.64 3.4 23.4 0.00 

 3.99 17.03 16.37 4.0 17.03 0.00 

 6.09 10.18 9.71 4.9 10.18 0.00 

 8.19 7.31 6.95 5.2 7.31 0.00 

Circular  3.15 23.2 22.42 3.5 23.16 0.17 

 3.99 16.86 16.18 4.2 16.82 0.24 

 6.09 10.06 9.57 5.1 10.04 0.2 

 8.19 7.22 6.84 5.6 7.2 0.28 

Rectangle  3.15 23.14 22.64 2.2 23.16 −0.09 

 3.99 16.81 16.37 2.7 16.82 −0.06 

 6.09 10.03 9.71 3.3 10.04 −0.1 

 8.19 7.19 6.95 3.5 7.2 −0.14 

1. 100 (McrFEM- Mcr2T)/ Mcr2T 

2. 100 (McrFEM- McrRef)/ McrRef 

 

The modified torsion constant that was arrived at by the best fit curve, proposed by Sonck and 

Belis 2017 is shown in Eq. 9. 
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  (9) 

  

   (10) 

 
for hexagonal, circular and rectangular holes respectively. Here, l0 =140 mm, w =70 mm and c 

=35 mm. 

 
Figure 4: Percentage error of Mcr of castellated beam  

 

3.2 Simply supported column subjected to axial load  

There is no effect of castellation on a simply supported column subjected to axial load as long as 

the area of hole is nearly the same. 

 

3.3 Cantilever subjected to axial load  

There is no effect of castellation on a simply supported column subjected to axial load as long as 

the area of hole is nearly the same. 

 

3.4 Simply supported beam-column subjected to axial load applied at different eccentricities 

from the major axis 

For beam column study, only the cellular members are considered. An axial load is applied at 

eccentricities of 10 cm, 20 cm and 30 cm from the major axis and the degradation of the 

buckling parameter, as the eccentricity is increased, is visible from the Fig. 5. In another study, 

the non-dimensional beam slenderness is plotted against the non-dimensional column 

slenderness. Proportional loading is applied (M/P = 0.1, 0.2, 0.3 etc.) and buckling parameter is 

found. As the member length increases, its critical axial load as well as the critical moment 

decreases as shown in Fig. 5. When the eccentricity of axial load about the major axis increases, 

significant decrease in the buckling load of the column behaviour is observed and vice versa. 



 7 

 

4. Conclusions 

This work presents a finite element formulation to study the buckling behavior of perfect beams, 

columns and beam-columns, castellated with different shapes of holes, lengths, loading and 

boundary conditions. Good agreement is observed with the results from the literature.  The intent 

of this paper is to make a beginning in the use of beam elements to study the complex LTB 

behavior of beams and frames. It is proposed to extend the formulation into the post buckling 

regimes. 
 

 

 
 

Figure 5: Beam column behavior of cellular members  
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