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FEM-based design for global and local buckling interaction

of welded box-section columns

Balázs Kövesdi 1 Mohammad Radwan2 László Dunai3, ,

Abstract

Interaction behavior of global (flexural) and local buckling is a widely researched, but currently 
not  solved  problem  in  the  design  of  slender  welded  box-section  columns.  In  the  current 
recommendations  two  design  methods  are  available: (i)  analytical  design  approaches,  which 
might  consider  the  coupled  stability  problem  by  adjustment  of  the  global  or  local slenderness 
ratio  of  the  column,  and  (ii)  finite  element  method  (FEM)  based design  covering  imperfection 
combinations  in  the  numerical  model.  Despite numerous previous  experimental  and  numerical 
results, there is no reliable analytical or FEM-based design approach to determine the buckling 
resistance.  This  research  topic  gets  special  importance  by  the  increased  application  of  high 
strength  steel  structures  (yield  strength  larger  than  500  MPa),  which  might  have  larger 
slenderness  than  columns  using  normal  strength  steel  increasing  the  need  for  the  appropriate 
design  for  the  interacting  stability  problem.  The  executed  research  program  investigates  the 
FEM-based design approach emphasizing the imperfections and their combination in the model 
to  achieve  appropriate  buckling  resistance.  By  the  application  of  equivalent  geometric 
imperfections covering different stability issues the effect of residual stresses will be duplicated 
leading  to  conservative  buckling  resistances.  The  current  paper  investigates  the  imperfection 
sensitivity  of  the  coupled  stability  problem  and  gives  design  proposal  on  the  imperfection

magnitudes to be applied in numerical models for FEM-based design approach.

1. Introduction
Welded  box-sections  are widely used structural  elements for  buildings  and  bridges due  to  their 
advantages within the mechanical properties,  resistance, easy design, and fabrication processes. 
The stability behavior of this column type is widely researched, but correctly solved only for the 
pure  flexural  buckling  and  local  plate  buckling  problems. The  most  conclusive  research results 
for  flexural  buckling  are  summarized  in  the  PhD  thesis  of  Somodi (2017) and  for  local plate 
buckling  in  the  PhD  thesis  of  Schillo (2017). However,  for  the  typical  geometries  used  in  the 
design praxis the most economic solutions are column geometries, where local (plate) and global
(flexural) buckling can also happen, and their interaction should be considered in the design. The
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stability  issue  of  these  column  type  gets  more  attention, especially,  if  high  strength  steel 
structures are used, which are nowadays spreading in the civil engineering praxis. Therefore, the 
current research focuses on the interaction of local and global buckling resistance of welded box- 
section  columns. Another evolving design method  used  by  civil  engineers is  the  numerical 
model-based design using direct  resistance  check,  where  the  ultimate  load is  determined  by 
geometrical and material nonlinear analysis using imperfections (GMNIA). This design process 
is  currently  under significant investigation and ongoing standardization  process  within  Europe. 
The second-generation Eurocodes is planned to contain a new code part prEN1993-1-14 (2021)

summarizing all design rules necessary for the numerical model-based design of steel structures. 
Within  the  GMNIA analysis  one  of  the  most  important  parameter  is  the  applied  imperfection 
shape and  magnitude.  Main  part  of  the  previous  investigations  within  this  topic  were  dealing 
with  the  imperfections  for  different  structure  types  and  failure  modes.  However,  investigations 
on  the  imperfections  to  be  applied  for  interacting  stability  problems  are  missing  from  the 
international  literature.  Therefore,  the  current  research  focuses  on  the  imperfections’ 
combinations to be applied to simulate the local and global buckling interaction of welded box- 
section  columns  and  to  determine  the  interaction  buckling  resistance  using  direct  resistance 
check.

The current research program contains a preliminary numerical parametric study focusing on the 
pure  local  buckling  and  pure  global  buckling,  separately.  Imperfections  to  be  applied  for  the 
welded box-section columns to simulate the flexural buckling and plate buckling are previously 
determined and presented in recent publications (Radwan et al. 2021) in a detailed manner. The 
current paper focuses only on the interaction combinations using the preliminary results obtained 
for  pure  local  and  global  buckling. Within  the  GMNIA-based  direct  resistance  check the 
resistances can  be  determined  using  two  different  design approaches: applying (i)  geometric 
imperfections  and  residual  stresses,  or  (ii)  equivalent  geometric  imperfections  representing  the 
combined effect of geometric imperfections and residual stresses. Reliable equivalent geometric 
imperfections are determined and proposed for different stability issues in the past. However, if 
designers  are  using  the  combination  of  the  equivalent geometric  imperfections  and  they  are 
adding all possible imperfections related to all possible failure modes (in this case for the local 
and  global  buckling),  the  effect  of  the  residual  stresses  are  duplicated  leading  to  conservative 
buckling  resistances, as observed, and  proved  by  researchers  in  the  past  (Degée et  al. 2008). 
Therefore,  the  investigation  of  the  imperfection  combinations  to  be  applied  for  the  interacting 
stability  problems  is  a  key-issue  for  the  accurate buckling resistance calculation. The executed 
research program contains the followings steps:

- summary of the previous research results on the imperfections for the local and global

buckling and standard-based design rules for the imperfection combinations,

- numerical model development and validation on the basis of previous test results,

- determination of accurate interaction buckling resistances using residual stresses and

geometric imperfections for the local and global stability issues,

- numerical  parametric  study  to  determine  the  necessary equivalent  geometric

imperfections  and  their  combinations – within  the  current  study  the  local  plate 
buckling  type  imperfection  is  selected  as  leading  imperfection, further  study  will 
investigate the opposite, if global imperfection is taken as leading imperfection,

- determination  of  the  necessary  accompanying  global  equivalent  geometric

imperfections for different cross-section geometries and column slenderness ratios,

- design model development for the imperfection combinations.
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2. Previous investigations and design rules for imperfections

2.1 Previous investigations of interaction buckling
Thus, there  is  a  large  number  of  previous  investigations on  the  local  and  flexural  buckling 
resistances, there is quite a small number of previous studies on the interaction buckling. Degée 
et  al. (2008) investigated  experimentally  and  numerically the  interaction  buckling behavior of 
welded rectangular section columns made of S355 steel grade. Based on the obtained results an 
upgrade of the European buckling from curve b to curve a was suggested, as the buckling curve
b was  found too  conservative. An  enhanced definition  of  global  slenderness ratio  was  also 
proposed  taking  into account  the  loss  of  stiffness  due  to  local buckling. Khan  et  al. (2017)

experimentally studied the  structural behavior and  buckling  resistance  of  slender  box-section 
columns  manufactured  from  HSS. Fifteen specimens  are tested and  buckling  resistances  are 
compared to various international standards. Numerical model was also developed to carry out a 
numerical parametric study, where L/1000 was used as global imperfection and b/1000 as local 
imperfection with  accompanying residual  stresses. All  the  numerical  and  experimental data 
showed that the results are lying above the buckling curve b of the EN 1993-1-1 (2005), which 
was proposed as the applicable buckling curve determining the interaction buckling resistance. 
Yang et al. (2017) investigated numerically and experimentally the interaction buckling behavior 
of welded box-section columns. Twelve steel columns with medium lengths were tested made of 
S235 and S355 steel grades. All test specimens failed by interaction buckling mode. Test results 
showed the  current  specifications  are  not  taking  into  account  the  post-buckling  capacity  of  the 
plates and therefore, leading to conservative resistances. A numerical parametric study was also 
performed by  Yang  et  al. (2017) on  normal  and  high  strength  steel  columns. The  numerical 
results  show the  buckling  curve a of EN  1993-1-1 (2005) might  be  applicable instead of  the 
buckling curve b for S960 steel grades. It was also noticed that there is a significant influence of 
residual stresses on the ultimate capacity that can reach up to 20% in the case of medium length 
columns, which could be considered in an enhanced resistance model.

Further  significant  research  work  has  been  done  by Usami  and  Fukumoto (1982  and  1984), 
Chiew et al. (1987) and Kwon et al. (2013). The most recent and extensive study has been made 
by  Schillo (2017).  She performed  thirteen  tests  on  square  welded  box-section  columns  with  a 
high b/t ratio  made  of  S500  and  S960  steel grades  having  various global  slenderness and 
performed  an  extensive  numerical  parametric  study  to  determine  the  interaction  buckling 
resistance  of  the  analyzed  columns. A  unique design approach  was developed  by  Schillo to 
consider the resistance  reduction  due  to local  buckling in  the  interaction  resistance. In  this 
approach,  an  additional  equivalent  local geometric imperfection  (ep) was developed  to  be 
implemented  into the  global buckling resistance formula.  The  proposed  equivalent  local 
imperfection can be determined by Eq. (1). 
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where: s is equal to the moment of inertia (I) over the area of the section (A) multiplied by the 

distance from the neutral axis to the maximum fiber (z). The parameters χA and χW are factors 

derived using the effective width method 
W
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A   ,  , ψ is a modification factor 

depending on the loading eccentricity. It can be seen that all previous investigations focused on 

the interaction buckling resistance calculation using analytical design concept applying tabulated 
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buckling  curves  validated  by experimental  and  numerical resistance database and  statistical 
evaluation.  However,  research  regarding  the  FEM-based  design approach and  proposed

imperfections, or imperfections combinations are missing from the international literature.

2.2 Previous investigations of imperfection scaling factors
Imperfection scaling factor for member buckling

The  most  recent  research  programs  in  this  topic  are  executed  by  Walport  et  al. (2020)

investigating  the  flexural  buckling  resistance  of  slender  I-section  columns  and  by  Quan  et  al.

(2021) investigating  the  lateral  torsional  buckling  resistance  of  I-section  beams.  Both  research 
program  had  common  aims  and  research  strategies  executing similar  numerical  parametric 
studies  leading  to  design  proposal  for  the  applicable  imperfection  magnitudes  separately  for 
flexural and lateral torsional buckling resistances using GMNIA analysis. Important new finding 
within these research works is that it is realized that the previously developed and standardized 
equivalent geometric imperfections for member buckling are developed for second order elastic 
analysis (GNIA) and they are not always applicable within the same form and having the same 
reliability for geometrically and materially nonlinear (GMNIA) analysis. In both research work, 
it was shown, that for design by second order elastic analysis (GNIA) following the 
recommendations of EN1993-1-1 (2005), the magnitudes of the equivalent bow imperfections 
can be  back-calculated  to  provide  the  same  result  as  would  be  obtained  from  the  member 
buckling  curves. However,  it  was  proved,  that these  equivalent  geometric  imperfections  do  not 
lead to accurate results using GMNIA analysis. Therefore, the equivalent bow imperfections are 
calibrated  against  benchmark  FE  results,  generated by GMNIA analysis using imperfections

(L/1000 geometric  imperfection and accompanying residual  stresses).  Based  on  the numerical 
results obtained, an equivalent bow imperfection amplitude according to Eq. (2) is proposed.
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where: L is the member length, α is the imperfection factor according to EN 1993-1-1 Table 6.1. 

The reliability of the proposed approach is evaluated according to EN1990 (2005), and it was 

shown that partial safety factors of 1.0 for steel and 1.1 for stainless steel can be adopted with 

accurate safety. Similar back-calculation and numerical parametric study was executed for the 

lateral torsional buckling resistance calculation by Quan et al. (2021). The aim of the study was 

to develop equivalent imperfections for use in out-of-plane stability design of steel and stainless 

steel members by GMNIA. The design proposals are summarized in Table 1. 

 
Table 1: Proposed imperfection magnitudes for lateral torsional buckling 

imperfection mode amplitude  

 

150
mod,0

L
e z    (3) 

 

150
1,,0

L
e zbow    (4) 

215
2,,0

L
e zbow  

 
(5) 



 5 

Two proposals for equivalent imperfection amplitudes are developed: (i) e0,mod, for use with 

eigenmode-affine imperfections; proposal is given by Eq. (3), and (ii) e0,bow, for use with 

sinusoidal hand-defined bow imperfections; proposal is given by Eqs. (4)-(5). The lateral 

equivalent bow imperfection e0,bow is defined as the summation of a half-sine wave with 

imperfection amplitude e0,bow,1  and a full-sine wave with imperfection amplitude e0,bow,2.  

 

Imperfection scaling factor for local buckling 

The Winter-type buckling curve provided by the EN 1993-1-5 (2006) has been criticised by 

many researchers in the past and it has been proved that it is not applicable for welded square 

box-section columns (Schillo 2017). Therefore, the standardized buckling curve for this specific 

case was changed and the buckling curve of the Annex B of EN 1993-1-5 is proposed to be used 

for the buckling resistance calculation. However, if buckling curve is changed, the equivalent 

geometric imperfection to be applied in FEM-based design processes should be also revised. 

Therefore, a calibration process was made by Radwan and Kövesdi (2021) for the numerical 

model based buckling resistance calculation. A numerical parametric study was executed using 

the same research strategy as applied by Walport et al. (2020) and Quan et al. (2021) for the 

member buckling cases. The numerical investigations proved that the equivalent geometric 

imperfection scaling factor to be applied for the plate buckling problems depends on the steel 

grade (fy) and the relative slenderness ratio of the analyzed cross-section ( p ). Two imperfection 

scaling factors are developed within the parametric study, one for the equivalent geometric 

imperfections and one for the geometric imperfections to be applied together with residual 

stresses. The best-fit approximation for the calibrated equivalent geometric imperfection is given 

by Eq. (6), where p  is the local plate slenderness ratio calculated by Eq. (7), fy is the nominal 

yield strength of the analyzed steel material, b is the plate width and σcr is the critical plate 

buckling stress under pure compression.  
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Based  on  the  executed  numerical  parametric  study  it was proved  that  the  application  of  this 
equivalent  geometric imperfections leads to buckling resistances showing very good agreement 
to  the  currently  best  plate  buckling  curve  developed  by  Schillo (2017) and  the  resistances  are 
close  to  the  buckling  resistances  provided  by  the  Annex  B  buckling  curve  of  the  EN  1993-1-5

(2006).

2.3 Design proposal of the new prEN 1993-1-14 (2021)
A new code prEN  1993-1-14 (2021) is  currently  under  development in  Europe which  will 
provide  design  rules  to FEM-based  design of  steel  structures. This  code  also  contains  the 
imperfections  to  be  applied.  According  to  these  design  rules,  imperfections  should  account  for 
the  effects  of  geometric  deviations  from  the  perfect  shape,  residual  stresses  and  boundary
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condition defects (e.g. uneven foundation, etc.). One of the following imperfection types may be 
applied in the numerical model:

a. geometric imperfections and additional residual stresses due to fabrication,

b. equivalent  geometric  imperfections  by  modification  of  the  perfect  shape  of  the

structure; these imperfections are intended to cover the effect of both the geometrical 
imperfections  and  the  residual  stresses  and  have  larger  magnitudes  than  solely 
geometric imperfections.

Concerning  to  plated  structures  the  prEN  1993-1-14  classifies  the  equivalent  geometric 
imperfections into three sub-groups which are the bases of the imperfection combinations:

- equivalent geometric imperfections for global structures (e.g. frames),

- equivalent geometric imperfections for structural members (e.g. beam/column),

- equivalent geometric imperfections for cross-sections (e.g. plates).

For  the  member  type  imperfections,  the  latest  research  results  introduced  in  Section  2.2  are 
considered  within  the  code.  For  the  plate  buckling  type  imperfections  the  proposal  for  the  EN 
1993-1-5 (2006) Annex  C  are  considered  without  any  changes. Regarding  the  imperfection 
combinations,  the  following  simple  rules  are  introduced. Where  both  geometric  imperfections 
and residual stresses are used, all the geometric imperfections and the residual stresses should be 
applied  to  the  model  at  the  same  time,  with  their  nominal  values.  Where  equivalent  geometric 
imperfections  arising  from  different  sub-groups  are  being  used  (e.g. frame,  member  and  cross- 
sectional imperfections)  each  imperfection  should  be  taken  with  its  maximum  amplitude  and 
they should be linearly added. For equivalent cross-section imperfections in plated structures, the 
combination of the imperfections might be necessary. The leading imperfection should be chosen 
first, with accompanying imperfections at amplitudes reduced to 70% of the defined value. Each 
imperfection type in turn should be chosen as the leading imperfection, with the remainder taken

as the accompanying imperfections (prEN1993-1-14, 2021).

3. Numerical modeling
3.1 Numerical model development
A parametric numerical model is developed using FE program ANSYS 18.5 using four-node thin 
shell  elements. The  general  layout  of  the  numerical  model is shown  in Fig. 1,  presenting  the 
geometrical  model  of  the  box-section  columns with  finite  element  mesh and  imperfections. 
Within  the  current  analysis  only  square  box-section  columns  are  analyzed,  which  are  always 
double symmetric. The applied imperfections related to local, global and interaction buckling are 
separately  presented  in  Fig.  1.  For  local  imperfections  (Fig.  1a)  half-sine  waves are  applied at 
each  panel of  the  cross-section  having  alternating  direction.  The  global  imperfection  is  a  half- 
sine  wave  along  the  entire  column  length  (Fig.  1b)  representing  the  buckling  length  of  the 
analyzed  columns.  To  determine  the  interaction  buckling  resistance  the  local  and  global 
imperfections  are  combined, as  shown  in  Fig.  1c.  The  magnitudes  of  the  applied  imperfections 
are detailed later in Sections 4 and 5. In the current analysis, hand-defined half-sine wave shapes 
are  used  as  imperfections,  but  the  numerical  analysis  also  proved  the  given  imperfection 
magnitudes are also applicable by using the first eigenmode shape as imperfections. Two master 
nodes are defined in the center of gravity of the end cross-sections. Rigid diaphragms were used 
to link all the 6 DOFs between the master nodes and all the nodes at the end cross-sections using 
rigid members. The movement of one of the master nodes is restricted against translation in (UX,
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UY, UZ) global directions and restrained against rotation along the longitudinal axis (RZ), while 

the other master node is allowed to move in the UZ direction allowing to apply the compression 

force on the column.  

 

 

Figure 1: a) Local, b) global, and c) interaction definitions of imperfections 

 

The applied material model presented in Fig. 2 is an elastic-plastic quad-linear material model 

proposed by Gardner et al. (2019) for NSS grades and introduced in prEN1993-1-14. The 

material models behave linearly elastic up to the yield strength (fy) by obeying the Hooke’s law 

with Young’s modulus (E) equal to 210000 MPa. The yield plateau is modelled between εy and 

εsh and an isotropic hardening behavior is modelled until reaching the ultimate strength (fu ; εu). In 

the current analysis S355 steel grade is used having nominal values for the yield and ultimate 

strengths (fy=355 MPa, fu=510 MPa), respectively. The parameters of the material model are 

given in Table 2. 

 

 
Figure 2: Applied material model according to prEN 1993-1-14 

 
Table 2: Parameters of the applied material model 

 fy 

[MPa] 

fu 

[MPa] 

εsh εu C1 C2 Esh 

[MPa] 

C1 · εu fC1εu 

S355 355 510 0.015 0.182 0.310 0.448 2310 0.057 451 

 

(a) (b) 

(c) 
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A well-established, standardized residual stress pattern is applied in the numerical model 

according to the recommendations of the ECCS (European Convention for Constructional 

Steelworks, 1988) and prEN1993-1-14 (2021). The details of this model are given in Fig. 3. The 

tensile stress is always taken equal to the yield strength. The compressive residual stress is taken 

according to Fig. 3 and based on the equilibrium of the tensile and compressive stresses. 

Parameters a and b define the distance of each plate subjected to tensile stresses near each corner 

of the section. The H/t ratio for the vast majority of the cross-section within the current study is 

larger than 40 to study class 4 (slender) sections, which are sensitive for local buckling. 

  
   

 

  

 

  

  

 

 

 

  

  

Figure 3: Parameters of the residual stress model

3.2 Model validation and verification
At  first  a mesh  sensitivity  analysis  is  performed  to  obtain  an  appropriate  mesh  size  yielding  to 
accurate results in a reasonable time to verify the numerical model. The mesh sensitivity study is 
performed  for  the  smallest  and  the  largest  plate  width within  the  parametric  study  and  it  was 
shown  that  16  elements  along  the  plate  widths  ensures  an  FE  mesh  which  is  fine  enough  to 
obtain  accurate  buckling  resistance.  For  all  other  cases  the  applied  element  number  has  been 
regulated to keep the same width-to-element number ratio. As a second step the numerical model 
is validated  by comparison  of  the  computed  load-deformation  curve  and  ultimate  load  to  test 
results. In  the  entire  research program, a  total  of  15  test  specimens  taken  from  four  different 
experimental  research  programs  are  selected  and  used  for  the  model  validation. Two  samples 
from 15 cases are shown in Figs. 4-5 to demonstrate the accuracy of the numerical model.

  

 

 
                                   a) Khan’s test specimen                                    b) Schillo's test specimen  

Figure 4:  Comparison of measured and computed load-deformation curves  

H/t Welding type σrt/fy σrc/fy a b 

10 – 1.0 −0.60 0 – 

20 Heavy weld 1.0 −0.82 3t 3t 

20 Light weld 1.0 −0.29 1.5t 1.5t 

40 Heavy weld 1.0 −0.29 3t 3t 

40 Light weld 1.0 −0.13 1.5t 1.5t 
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The figure on the left shows a test result taken from the research program of Khan et al. (2016) 

and on the right-hand side is taken from Schillo (2017). Both comparisons show a very good 

agreement between the numerical and the experimental results demonstrating that the developed 

numerical model is capable to follow the interaction buckling phenomena and provides accurate 

buckling resistance. The failure mode and the obtained deformation and stress distribution is 

shown in Fig. 5 for one test specimen to demonstrate the obtained failure modes.  

 
   

 

 

  

 

   

   

    

  

  

   

 

 

a) deformed shape b) von-Mises stresses

Figure 5:  Obtained failure mode for interaction buckling at the final step of loading of Khan’s test specimen

3.3 Investigated parameter range
The executed numerical parametric study aims to create a large database to study the interaction 
buckling resistance and  imperfection  sensitivity of  columns  having  different  local  and  global 
slenderness ratio. Therefore, the b/t ratio of the analyzed cross-sections and the columns length 
are  varied  within  a  wide  parameter  range. The  applied  geometries,  combination  of b=h and t
values  are listed in Table 3. More  than  2000  GMNI  analyses  are  performed  investigating 50 
different cross-sections and  15  column lengths for  each.  The  local  slenderness  ratio  is varied 
between 0.7 to 2.8, while the global slenderness ratio is changed between 0.2 and 2.6. For each 
column  geometry many analyses are  executed  using  different  imperfection  combinations,  as

presented in the following sections.

Table 3: Geometrical properties of the analysed cross-sections

 

 b = h [mm] thickness values [mm] lengths [mm] 

1 200 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0; 5.5; 6.0; 

6.5 

750; 1750; 2500; 3000; 3750; 

5000; 6250; 7500; 8750; 10000; 

11250; 12500; 15000; 17500; 

20000 

2 250 2.0; 2.25; 2.5; 2.75; 3.0; 3.25; 3.5; 4.0; 

5.0; 6.0; 7.0; 8.0 

3 350 2.75; 3.0; 3.5; 4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 

7.0; 8.0; 9.0; 10.0 

4 450 3.75; 4.0; 4.25; 4.5; 4.75; 5.0; 5.25; 5.5 

5.75; 6.0; 6.5; 7.0; 8.0; 9.0; 10.0 
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4. Analysis of imperfection combinations

4.1 Applied imperfections and combinations
In the applied numerical parametric study  at first the buckling resistances are determined using 
different  imperfection  combinations and  results  are  compared  and  evaluated. The  applied 
imperfection combinations investigated in the current study are summarized in Table 4. At first, 
buckling  resistances  are  determined  using combination  of residual  stresses  and  geometric 
imperfections,  which  calculation  is  considered  as  leading  to  the  most  accurate  buckling 
resistance  for  this  column-type  and  cited  as  “accurate  resistance”  in  the  followings.  For  box- 
section  columns  there  are  many  different  residual  stress  patterns  proposed  in  the  international 
literature; within  the  current  study  the  most  reliable,  well-established, test-based residual  stress 
pattern recommended by ECCS (1988) is applied, which is also implemented into the new prEN 
1993-1-14 (2021). The geometric imperfection for the global buckling is taken by L/1000, which 
is also an accepted value to determine the flexural buckling resistance. These imperfections serve 
as background for the  Eurocode-based  flexural  buckling  curves.  For  the  local  buckling 
imperfections, the previously proposed and calibrated imperfection scaling factor (b/flocal,geom) is 
applied,  developed  by  Radwan  and  Kövesdi (2021).  This  imperfection  scaling  factor  leads  to 
plate  buckling  resistances following  the  most  accurate  buckling  curve  developed  by  Schillo
(2017). The proposed buckling curve of Schillo is calibrated to many test results using statistical 
evaluation and numerical simulation results made on normal and high strength steel box-section 
columns. The buckling resistance determined using the combination of the above given residual 
stresses and geometric imperfections are considered as the most accurate buckling resistance for

the local and global buckling interaction serving as target values for the further investigations.

Table 4: Applied imperfection combinations

 

 global imperfection local imperfection residual stresses 

Accurate resistance L/1000  

according to Eurocode-

based buckling curve 

development processes 

b / flocal,geom  

proposed geometric imperfections by 

Radwan and Kövesdi (2021) 

representing buckling curve 

developed by Schillo (2017) 

ECCS residual 

stress patterns  

Imp. combination #1 L/200  

according to EN 1993-

1-1 – buckling curve b 

b / 200  

according to EN 1993-1-5 and EN 

1993-1-14  

- 

Imp. combination #2 α·L/150  

according to EN 1993-

1-14 – α = 0.34 

b / 200  

according to EN 1993-1-5 and EN 

1993-1-14  

- 

Imp. combination #3 α·L/150  

according to EN 1993-

1-14 – α = 0.34 

b / flocal  

proposed equivalent geometric 

imperfection by Radwan and Kövesdi 

representing buckling curve 

developed by Schillo (2017) 

- 

 

After determining the most accurate buckling resistance three different imperfection 

combinations are analyzed, and the buckling resistances are compared. In the case of 

imperfection combination #1, global imperfection with amplitude of L/200 is applied, which is 

the current proposal of the EN 1993-1-1 (2005) for plastic analysis representing buckling curve 

b. For the local imperfection b/200 is used as equivalent geometric imperfection magnitude 

which is proposed by prEN 1993-1-14 (2021) taken from EN 1993-1-5 (2006) Annex C. In the 



 11 

case of imperfection combination #2 the global imperfection is changed according to the most 

recent research results of Walport et al. (2020) proposing buckling curve dependent imperfection 

scaling factor. The new scaling factor is implemented into the prEN 1993-1-14, and it was 

combined with the b/200 local imperfection. As a third option (imperfection combination #3) the 

local imperfection is also changed according to the most recent improvement of Radwan and 

Kövesdi (2021). The proposed equivalent geometric imperfection is developed for box-section 

columns and calibrated to the currently most accurate buckling curve developed by Schillo 

(2017). The imperfection scaling factor according to this proposal depends on the local 

slenderness ratio ( p ) of the analyzed cross-section and the yield strength (fy) of the steel 

material. The best-fit approximation of the calibrated scaling factor is given by Eq. (8).   
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4.2 Comparison of buckling resistances
For  all  analyzed  columns  the  buckling  resistances  are  determined  using these three different 
imperfection combinations summarized in Table 4. At first the buckling resistance are compared 
to  each  other  and  presented  in  Fig. 6. The  vertical  axis  represents  the  buckling  resistance 
according to the accurate solution and the horizontal axis the buckling resistance using the three 
different  imperfection  combinations.  It  can  be  seen  from the  results  that  load  case  combination 
#1  has  the  largest  scatter  and  there  are  results  on the  safe  and  unsafe  side  as  well.  Load  case 
combination  #3  is  the  only  providing  solutions  always  on  the  safe  side  in  the  entire  analyzed 
parameter  range. Similar  comparisons  showing  the  results  depending  on  the  local  or  global 
slenderness are given in Figs. 7-10 making possible to evaluate the results more in details. The 
vertical  axis  of  these  graphs  represents  the  ratio  of  the  accurate  and  the  computed  resistance 
using different imperfection combinations; the horizontal axis shows the slenderness ratio.
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Figure 6: Comparison of the accurate resistances to buckling resistances using different imperfection combinations 
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Figure 7: Comparison of buckling resistances – relationship with local slenderness ratio – 1 

 

0

0.2

0.4

0.6

0.8

1

1.2

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0

F
n

u
m

/ 
 F

n
u

m
, 

ac
cu

ra
te

 
  
[-

]

local slenderness ratio  λp [-]

Imp. combination 1

Imp. combination 3

dominant flexural buckling dominant plate
buckling

unsafe side

safe side

sc
at

te
r

interaction

 
Figure 8: Comparison of buckling resistances – relationship with local slenderness ratio – 2 
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Figure 9: Comparison of buckling resistances – relationship with global slenderness ratio – 1 
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Figure 10: Comparison of buckling resistances – relationship with global slenderness ratio – 2 

 

Results show different imperfection combinations has different impact on the buckling resistance 

depending on the global and local slenderness ratio. Therefore, the results are separately 

evaluated depending on the p  and glob  slenderness ratios. Results show the buckling 

resistances using the imperfection combination #1 gives the largest scatter quasi-uniform within 

the entire local slenderness region. However, buckling resistances within the small slenderness 

range are mainly on the safe side, for the large local slenderness range on the unsafe side. Similar 

trends can be obtained for the resistances using the load case combination #2 but having 

significantly smaller scatter. Only the imperfection combination #3 can ensure, that the buckling 

resistances for the interacting buckling phenomena are in the entire analyzed parameter range on 

the safe side. However, results prove for the interaction domain the scatter is significantly larger 

(shown in Fig. 8 by the black arrows) than in case of pure flexural buckling or local plate, for 

which the imperfection magnitudes are calibrated. Similar trends are shown in Figs. 9-10, 

presenting all the results depending on the global slenderness ratio. Results prove application of 

imperfection combination #1 leads to safe or unsafe side resistance depending on the slenderness 

ratio. The application of the improved global bucking imperfection scaling factor corrects this 

trend (imperfection combination #2) and provides uniform scatter along the entire global 

slenderness range. The application of the local imperfection scaling factor proposed by Radwan 

and Kövesdi (2021) pushes all results to the safe side, meaning that both modifications are 

necessary. However, the scatter significantly increases in the interaction domain proving the 

importance of the imperfection combination rules. The comparison of the bucking resistances 

and the statistical evaluation of the numerical calculations are summarized in Table 5 presenting 

the minimum, maximum and the average values and the standard deviations for the obtained 

resistance ratios. 
 

Table 5: Comparison of buckling resistances using different imperfection combinations 

 Imp. 

combination 1 

Imp. 

combination 2 
Imp. 

combination 3 

Min. 0.741 0.879 0.806 

Max. 1.135 1.213  1.024 

Average 0.974 1.070 0.953 

Cov. 0.107 0.079 0.047 
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(9)

where e0,local is defined by Eq. (8) and x% e0,local is the value to be determined. The imperfection 
scaling  factor  is  considered as  the buckling  length  divided  by  the imperfection scaling  factor

(L/fglobal). The value of fglobal is presented on the horizontal axis of Fig. 11.

These  results  prove the proposal of  Walport  et  al. (2020) works  well  for  flexural  buckling and 
makes  the  scattering  significantly  smaller  for  dominant  flexural  buckling.  The  proposal  of 
Radwan and Kövesdi (2021) works well for dominant local buckling and makes all the computed 
resistances on the safe side. However, in the interaction buckling domain the scatter of the results 
is quite large proving that the imperfection combinations need improvement, thus the application

of both the global and local imperfection magnitudes can lead to conservative results.

5. Imperfection combination proposal development
After  the  analysis  of  the  buckling  resistances  using  different  imperfection  combinations  the 
accurate  imperfection  magnitudes  are  also  determined  which could be  used  in  imperfection 
combinations.  The  proposed  strategy  of  the  prEN  1993-1-14  is applied,  thus  one  leading 
imperfection  is  selected  and  the  necessary  magnitude  for  the  accompanying  imperfections is 
determined.  Within  the  current  study  the  local  plate  buckling  type  imperfection  is  selected  as 
leading imperfection (considered always with 100% power) and a numerical parametric study is 
executed  to  determine  how  large  should  be  the  global  member-type  imperfection  to  reach  the 
accurate buckling resistance. One example for the imperfection sensitivity study is presented in 
Fig. 11. In the figure the vertical axis represents the buckling resistance, the orange vertical line 
represents the accurate solution, and the blue points represent the numerical calculations results 
with 100% local imperfection and accompanying global imperfection (according to Eq. (9)). By 
the  intersection  point  of  the  two  lines,  the  necessary  imperfection  magnitude of  the  global
imperfection is determined for all analyzed column geometries.
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Figure 11: Results of imperfection sensitivity study and determination of necessary imperfection scaling factor for 

the accompanying global imperfection 
 

The necessary imperfection scaling factors are determined for all analyzed column geometries 

and the determined scaling factors are evaluated in the function of the global ( glob ) and local 
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( p ) slenderness ratios. The obtained results are presented in Fig. 12; the vertical axis represents 

the determined imperfection scaling factor, and the horizontal axis shows the global slenderness 

ratio. The five diagrams represent columns having five different local slenderness ratios.  
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Figure 12: Numerical results and obtain trendlines for the accompanying global imperfections  
 

Results show there is a clear trend in the necessary accompanying global equivalent geometric 

imperfections which can be characterized by the global and local slenderness ratios. The 
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diagrams also contain lower bound trendlines showing the obtained trends for the necessary 

imperfections. The physical meanings and explanations of the obtained results are the 

followings:  

- the accompanying equivalent geometric imperfection should be larger than L/1000 

(global geometric imperfection) for many different slenderness values, meaning that 

the effect of the residual stresses for flexural buckling are not covered by the leading 

local equivalent geometric imperfection alone,  

- the proposed equivalent geometric imperfection α·L/150 gives minimum values for 

the obtained accompanying imperfections, meaning that the imperfection can be 

significantly reduced, if imperfection combinations are applied,  

- at the main interaction domain (moderate local and global slenderness) the 

accompanying global imperfection is between L/500 – L/1400 depending on the local 

slenderness ratio,  

- if both the global and local slenderness ratios are large, the accompanying 

imperfection can be significantly smaller than its basic value (α·L/150),  

- if both the global and local slenderness ratios are small, the accompanying 

imperfection can be significantly smaller than its basic value (α·L/150),  

- in the interaction domain there is a smooth transition characterized by the presented 

trendlines in Fig. 12.  

It can be seen all the trendlines have similar character and the corner points are located at similar 

global slenderness ratios. Therefore, a model is created presented in Fig. 13 giving the necessary 

imperfection scaling factor (fglobal) in the function of the global ( glob ) and local ( p ) 

slenderness ratios. The obtained imperfections have clear physical background and gives the 

necessary imperfection magnitudes depending on the slenderness ratio alone. The values of the 

vertical axis are given by Eqs. (10)-(12) making the adjustment to the trendlines presented in Fig. 

12.   

 
Figure 13: Proposed model for accompanying global geometric imperfections  
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6. Conclusions
Numerical research program is executed to investigate the effect the imperfection combinations 
on  the  local  and global  buckling  interaction of  welded  box-section  columns.  Based  on  the 
numerical simulation results the following conclusions are drawn:

- the applied imperfection combination has significant influence on the obtained buckling

resistance, which can reach up to ±25% difference compared to accurate resistance,

- the imperfection proposal of Walport et al. (2020) applied in prEN 1993-1-14 (2021) for

the global imperfection gives accurate results for dominant global buckling cases,

- the imperfection proposal of Radwan and Kövesdi (2021) for the local imperfection gives

accurate results for dominant plate buckling cases,

- for the interaction domain the combination of these two imperfections (acc. to Walport et

al. and Radwan and Kövesdi) provides always safe side resistances,

- however,  for  most  accurate  resistance  prediction  an  imperfection  combination  rule  is

developed  and  presented  in  the  current  paper taking  always  the  local  buckling  type 
imperfection  as  leading  imperfection  and  the  global  buckling  type  imperfection  as 
accompanying one.

Further  investigations  are  planned within  this  topic  to  investigate  the  necessary  imperfection 
combination for the  case  if  global  imperfection  is taken  as leading  imperfection  and  the  local 
imperfection would  be the  accompanying  one.  Within  the  design  process  both  imperfection 
combinations could be used leading to accurate buckling resistance.
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