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Abstract 

In general, parameters such as member slenderness, rise-to-span ratio, and support conditions 

determine the global stability of single-layer reticulated domes. The effect of member 

connectivity on the global and local stability of reticulated domes is usually not considered, even 

though they play a vital role. Hence, this paper examines the global stability of single-layer 

reticulated dome configurations based on the valences of vertices, edges, and faces. These 

valences are derived from the interrelation between the elements within a configuration. Valency 

is the number of specified elements connected to a different element. The valency plays a vital 

role in determining a reticulated dome's global stability as the interconnections ensure the 

smooth flow of load from the applied location to the support. Hence, the global stability of 

different single-layer configurations with different valences of vertices, edges, and faces is 

examined with different loading and support conditions. Different valences for selected dome 

configurations are calculated during the initial stage. Then the global stability of the dome 

configurations under different loading and support conditions is analyzed. The relation between 

the valency and the stability of dome configurations is analyzed to identify the stable dome 

configurations under various load conditions. Valency information helps to recognize the type of 

failure in the domes and reduces the probability of failure by altering the data to obtain an 

efficient configuration. 

 

1. Introduction 

Reticulated domes are spatial structures used to cover large volumes with the least surface area. 

The double curvature makes them one of the most efficient structures to cover large column-free 

spaces. The demand for the domes comes from both efficiency and aesthetics. Advancements in 

fabrication methods and efficient connection systems have considerably reduced construction 

time. They are used to cover large column-free areas like museums, art galleries, petroleum 

storage tanks, observatories, and stockpiles (Fig. 1). The spherical surface is used as the surface 

of revolution in most cases. The resistance provided by the structure against the load is through 
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membrane action, and most of the members are primarily subjected to the axial force. The axial 

force ensures maximum utilization of the members' capacity and the resulting structure's high 

strength to weight ratio. 

 

 
 

Figure 1: Interior view of the ring stockpile dome in Merida (Geometrica Inc., 2008) 

 

Many single-layer dome configurations are constructed with triangles as a basic unit, as 

triangulation provides the most stable structure (Makowski 1986). The difference between 

triangulated structures and non-triangulated configurations is the variation in their member 

connectivity. Dome configuration changes when there is a modification in connectivity between 

the members. The studies related to the stability of single-layer reticulated shells are based on 

member slenderness, rise-to-span ratio, and connection rigidity. The importance of member 

connectivity is seldom studied. 

 

The general instability behaviors in single-layer reticulated shells are broadly classified as 

geometrical factors and behavioral factors (Gioncu and Balut 1992). The shell geometry and the 

mesh density are the geometrical factors. The behavioral factors are instability forms, 

geometrical and material nonlinearities, imperfections, joint stiffness, and load distributions. A 

majority of the studies on single-layer reticulated shells are on behavioral factors, where the 

global and the local instabilities are comprehensively examined.   

 

The stability of reticulated shells is studied based on continuum shell analogy theory, finite 

element methods, and experimental methods. Direct formulas are available to find the load-

carrying capacity of the lattice structure when it is converted into an equivalent continuum shell 

(IASS working group 8 report 1985; Saitoh et al. 1986; and Suzuki et al. 1992). However, the 

conversion of discrete structures to continuum shells was not accurate, and it was challenging to 

find equivalent shell structures for the lattice structures. 
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The reticulated domes' global stability behavior depends on the buckling of a single member 

(Tanaka et al. 1985). The experimental studies showed that the slenderness of the members could 

cause the failure (Lenza 1992). Kani and Heidari (2007) described the automatic calculation of 

the bifurcation path of reticulated domes. A study on the progressive collapse of the domes due 

to the dynamic propagation of snap-through buckling found that the impact of dynamic snap-

through is higher for pin-jointed domes than rigid-jointed domes (Abedi and Parke 1996). The 

single-layer dome configurations with non-triangulated patterns were more sensitive to dynamic 

snap-through than the domes with triangulated patterns. Yamada et al. (2001) examined 

imperfection sensitivities in single-layer lattice domes. Lopez et al. (2007) conducted a 

numerical and experimental investigation on a single-layer reticulated dome with semi-rigid 

joints. The study considered the effect of factors like dome geometry, member slenderness, joint 

rigidity, and load distribution. The study established the influence of geometric parameters on 

the global stability of dome structures. 

 

The joint rigidity influences the load capacity of the single-layer shell domes to a great extent 

(Kato et al. 1998, Lopez et al. 2007, and Ma et al. 2015). Members in a dome are interconnected 

by a pin, semi-rigid, or rigid connection. Usually, semi-rigid or rigid connections are adopted for 

single-layer shells (IASS WG 8, 2014). Domes with semi-rigid joints will have lesser load 

capacity compared to domes with rigid joints. The joint stiffness also plays a crucial role in 

shaping the grid structures (Tsavdaridis et al. 2020). 
  

Finite element software packages assist in conducting Geometrically Nonlinear Analysis (GNA), 

Geometrically and Materially Nonlinear Analysis (GMNA), and Geometrically and Materially 

Nonlinear Imperfection Analysis (GMNIA). Finite element analysis becomes more accessible 

and faster with technological advancements in computational tools. These packages help to 

understand the elastic and elastoplastic behavior of reticulated domes efficiently. Numerous 

studies on single-layer dome configurations based on finite element analysis have been 

conducted in recent times. The elastoplastic stability analysis of single-layer reticulated domes 

found that the buckling mode can change with the rise-to-span ratios (Fan et al. 2010). The 

elastoplastic stability also depends on the initial curvature of the members (Fan et al. 2012). The 

examination of the interaction between member buckling and overall buckling resulted in two 

types of instability patterns. They are progressive instability and synchronous instability (Yan et 

al. 2016). The member buckling occurs before the overall buckling in progressive instability, and 

the member buckling and the overall buckling co-occurs in synchronous instability.  
 

The past studies have predominantly focused on the impact of member slenderness, joint rigidity, 

initial imperfection, geometrical and material nonlinearity, and load distributions. The study on 

the effect of member arrangement on stability is limited. There are tools and algorithms available 

to create a wide variety of single-layer dome configurations. The Formex Algebra is an excellent 

example of configuration processing (Nooshin and Disney 2000). Various shell configurations 

can be generated from the software developed based on Formex Algebra. Even though there are 

tools to create a wide variety of shell configurations, the fundamental reason why there is a 

difference in the load capacity for various configurations is seldom studied. Hence, a dome's 

basic elements and parameters become significant for explaining its behavior. A structure or a 

configuration can be defined by the basic elements of vertices, edges, faces, and cells. 

Parameters of structures are based on the interrelation between these elements (Loeb 2012). 
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These parameters are used to create different types of configurations (Kolakkattil et al. 2021). 

The variation in parameters is relevant while comparing the overall resistance of reticulated 

cylindrical shells by changing the connectivity between the members (Kolakkattil et al. 2021).               

 

The dependence of parameter "valency" on the overall resistance of single-layer dome 

configurations helps to identify the optimum connectivity within structures with double 

curvature. Hence, this paper examines the effect of average edge valency of vertices and average 

edge valency of faces on the overall resistance of the structure.           

 

2. Parameters used to define a configuration 

The basic parameters of a configuration will help to explain the variation in load capacity of 

different single-layer domes. A configuration is a combination of elements - vertices, edges, 

faces, and cells. These elements help to identify the parameters within a structure. These 

parameters are dimensionality, valency, and extent (Loeb 2012).  

 

The first parameter, dimensionality, is the degree of freedom of elements within a structure. For 

example, the dimensionality of a vertex and an edge are zero and one, respectively. Similarly, the 

dimensionality of a face and a cell are two and three, respectively. The second parameter, 

valency, is defined as the number of elements of a given dimensionality that meet an element of 

another dimensionality. The edge valency of each vertex in a hexagon is two, as each vertex is 

directly connected to two edges (Fig. 2). Similarly, the vertex valency of the face is six as there 

are six vertices for the hexagon. Different elements create different valences with the remaining 

elements in a structure (Table 1). The third parameter, extent, indicates measurable quantities 

like length, area, and volume. The total length and the total weight of the structures are defined 

based on this parameter. This parameter is significant due to its direct relation to total 

construction cost. 

 
Figure 2: Vertex valency explained with a hexagon  

 
 

Table 1: Different valences in a structure 

Element  
Vertex 

Valency  

Edge 

Valency  

Face 

Valency  

Cell 

Valency  

Vertex  -  V1  V2  V3  

Edge  2  -  E2  E3  

Face  F0  F1  -  2  

Cell  C0  C1  C2  -  
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The variation in any of these parameters will modify the configuration. The overall resistance of 

the structure will change as a result of this modification. Hence, the study of these parameters 

helps to predict their impact on the resistance of a dome. The effect of the parameter "valency" is 

studied in this paper. The variation of the valency helps to create different configurations, which 

in turn helps to choose the required configuration based on the resistance required for a structure. 

A unique nomenclature is provided for single-layer dome configurations based on the valency of 

the vertices (Kolakkattil et al. 2021). If the edge valency of all the faces in a configuration is 

identical, the edge valency of vertices is arranged clockwise to derive the nomenclature. Hence, 

the nomenclature assigned for the three-sided face is V.4.3.3 (Fig. 3).   The prefix "V" denotes 

that all faces have identical edge valency. 

 
Figure 3:  Nomenclature for a configuration by using the edge valency of the vertex. The edge valency is arranged in 

a clockwise direction to derive the nomenclature.   

 
 

Three configurations (Fig. 4) with different edge valences were selected to study the effect of 

valency on the overall stability of reticulated domes. The nomenclature assigned for them based 

on the edge valency of the vertices is provided along with each configuration. 

 

The faces near the support are different from the other regions of the dome configuration. Hence, 

the average value of edge valency of the vertices and edge valency of faces are introduced to 

capture the difference (Eq. 1 and Eq. 2). Those average values are calculated by considering the 

appropriate weight of each valency across the configuration. For Eq. 1, 1V  is the average edge 

valency of the vertices, 
rN0  is the number of vertices for which the edge valency is 'r' and N0 is 

the number of vertices. For Eq. 2,     is the average edge valency of the faces, sN2  is the number 

of faces for which the edge valency is 's', and N2 is the number of faces in the configuration. The 

properties derived from parameters of dome configurations, including their average edge valency 

of the vertices and faces, are tabulated to identify the variation among them (Table 2). 
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(a) 

 

 

 
 

(b)  

 

 

 
 

(c)  

 

 
Figure 4:  Three configurations with varied edge valency of the vertices and faces chosen for the study (a) V.6.6.6 

(b) V.3.3.3.3.3.3 (c) V.6.4.3.4 
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Table 2: Properties of the three dome configurations 

Parameters V.6.6.6 V.3.3.3.3.3.3 V.6.4.3.4 

N0 331 660 685 

N1 930 990  1332 

N2 600 331  648 

1V  5.620 3.0 3.889 

F1
 3.0 5.819 4.0 

                                       N0 - Number of vertices,   N1 - Number of edges,  N2 - Number of faces,   

                                      
1V  – Average edge valency of vertices,       - Average edge valency of faces 

 

   

3. Limit load for the dome configurations 

The three configurations were modeled and subjected to geometrical and material nonlinear 

analysis using the finite element software ABAQUS for finding the overall resistance. Domes 

with four rise-to-span ratios, two support conditions, and two loading patterns were used to 

establish the consistency of the results. 

 

The span of the dome configurations is fixed at 40 meters, and the rise is varied to arrive at four 

different rise-to-span ratios (Fig. 5). They are denoted as R5, R6, R7, and R8 for the rise-to-span 

ratio of 1:5, 1:6, 1:7, and 1:8, respectively. Pin jointed and fixed support conditions are used for 

the dome configurations to find the effect of support conditions on the load capacity of the shells 

(Fig. 6). Two types of loading patterns were used to study the behavior of the dome. They are 

Full-span gravity loading and Semi-span gravity loading (Fig. 7). The unsymmetric loading is 

critical for the regions with high snowfall. Hence, semi-span gravity loading is considered during 

the analysis. The member cross-section is derived for the configurations based on IS 800 (2007) - 

Indian Code of practice for general construction in steel. The circular hollow section (CHS 125) 

of outer diameter 139.7 mm and thickness of 4.8 mm is adopted for all the members for the three 

configurations. The slenderness ratio of the members is adjusted to prevent the member 

buckling. The members are modeled with the Timoshenko beam element "B31" with four 

elements within a member. Elasto-perfectly plastic constitutive relation with the steel of young's 

modulus 200 GPa and yield stress 250 MPa is adopted for the model (Fig. 8). The members are 

assumed to have pure rigid connections between them. The pin-joint or semi-rigid joint is 

inadequate for the stability of single-layer dome configurations with non-triangulation as the 

primary cell. Hence, rigid connections are provided for all three dome configurations. The 

welding between the members helps to provide nearly rigid connections in real-world scenarios. 

 

Based on the analysis of the three configurations under uniform gravity loading and the semi-

span gravity loading, the limit load capacity of the configurations was obtained. The limit load is 

the apex of the load-deflection curve where the structure's stiffness will become zero. The 

member buckling is avoided in all the configurations by designing the members with an adequate 

slenderness ratio. As the weight of the structure is different among different configurations, the 

parameter 'λ' is defined by dividing the limit load by the total weight of the structure (Eq. 3). 

Here, 'P' is the limit load (kN), and 'w' is the total weight (kN) of the structure. 

  

(3) 

 

F1

w

P
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Span = 40 m 

 

 
Figure 5: The dome configuration with a span of 40 meters. The span-to-rise ratios varied from 5 to 8. 

 

 

         
  

(a)                                                      (b) 

 
Figure 6: Support conditions adopted for the study: (a) Pin jointed support (b) Fixed support  

 

 
 

(a) (b) 

 
Figure 7: Loading patterns considered for the study: (a) Full-span gravity loading (b) Semi-span gravity loading 

 

  

Rise    

R5 

R6 

R7 

R8 
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Figure 8: Elasto- perfectly plastic constitutive model for studying the behavior under gravity loading  

(σ  - Stress in MPa,  Ɛ - Strain, and E - Young's modulus in MPa) 

 

 

The three given dome configurations have a different value of average edge valency of vertices 

and average edge valency of faces. The impact of support conditions on the limit load capacity is 

different among the three dome configurations. The variation in limit load capacity with support 

conditions is minimum for configuration V.6.6.6 and maximum for configuration V.3.3.3.3.3.3 

when full-span gravity loading is considered (Fig. 9). However, this variation is minimal for all 

three configurations when semi-span gravity loading is considered (Fig. 10). Hence, the impact 

of support conditions is higher for the dome configuration with full-span gravity loading 

compared to semi-span gravity loading. This impact is minimal for configuration V.6.6.6, where 

the average edge valency of the vertices is high, and the average edge valency of the face is low. 

The minimum impact of support conditions is explained by the triangulation present in this 

configuration, which avoids the requirement of rigid fixity of bases in real structures. 

 

 

 
Figure 9:  Comparison of limit load capacity using λ for different support conditions with full-span gravity loading 

(PS: Pinned support, FS: Fixed support) 
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Figure 10:  Comparison of limit load capacity using λ for different support conditions with semi-span gravity 

loading (PS: Pinned support, FS: Fixed support) 

 

The impact of loading patterns on dome configurations was studied by considering full-span 

gravity loading and semi-span gravity loading. The study of unsymmetrical loading is critical for 

regions with heavy snowfall, where the unsymmetrical distribution of snow load can cause the 

failure of dome structures. The variation in the parameter λ was studied by considering various 

rise-to-span ratios and the two support conditions. The reduction in load capacity is minimum for 

configuration V.6.6.6 and maximum for configuration V.3.3.3.3.3.3 when the dome was 

subjected to semi-span gravity loading compared to full-span gravity loading with pin support 

(Fig. 11). This reduction was less for dome configurations with rigid supports than for dome 

configurations with pin supports due to the higher rigidity provided by the fixed supports (Fig. 

12). Overall, the load capacity is higher for configuration V.6.6.6 and lower for configuration 

V.3.3.3.3.3.3. This observation reinstates the impact of higher average edge valency of vertices 

and lower edge valency of faces on the overall stability of the dome configuration. 

 

 
Figure 11:  Comparison of limit load capacity using λ for different loading conditions with pinned support  

(FL: Full span gravity loading, SL: Semi span gravity loading)  
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Figure 12:  Comparison of limit load capacity using λ for different loading conditions with fixed support  

(FL: Full span gravity loading, SL: Semi span gravity loading) 

 

The impact of the average edge valency of the vertices and the average edge valency of the faces 

on the limit load of the dome configurations was studied by considering the limit load parameter 

λ. Results were linked for dome configurations with two support conditions, four rise-to-span 

ratios, and two loading cases. The arrived outcomes were fitted with a second-degree polynomial 

to comprehend the trend of λ with the average edge valency. 

 

The limit load capacity increases with the increase in the average edge valency of the vertices for 

dome configurations with both pin support conditions and fixed support conditions under full-

span gravity loading (Fig. 13(a) & Fig. 13(c)). The maximum limit load capacity is for the 

configuration with average edge valency of the vertices 5.62, and the least limit load capacity is 

for 3. However, the limit load capacity decreases with an increase in the average edge valency of 

the faces (Fig. 13(b) & Fig. 13(d)). 

 

The support change has minimal impact on the limit load capacity for the configuration with 

nomenclature V.6.6.6 and maximum impact for the configuration with nomenclature 

V.3.3.3.3.3.3. This difference shows the superiority of triangulation even though the member 

connections are rigid. 

 

The results obtained for dome configurations under semi-span gravity loading were similar to the 

full-span gravity loading case. The λ increases with the average edge valency of the vertices and 

decreases with the average edge valency of the faces (Fig. 14). The difference was only the 

reduction in the limit load capacity (hence the value of λ) for semi-span loading compared to the 

full-span loading case. 

 

Hence, the analysis shows a trend among the selected single-layer dome configurations. 

Increasing the average edge valency of the vertices and decreasing the average edge valency of 

the vertices increases the stability of the single-layer dome configurations. 
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(a)                                                                                    (b) 

 

 
(c)                                                                                   (d) 

 
Figure 13: The variation of limit load capacity of the dome configurations in terms of the parameter λ with the 

average edge valency of the vertices and the average edge valency of the faces under full-span gravity loading: (a) 

comparison with average edge valency of vertices for the domes with pinned support condition  (b) comparison with 

average edge valency of faces for the domes with pinned support condition (c) comparison with average edge 

valency of vertices for the domes with fixed support condition (d) comparison with average edge valency of faces 

for the domes with fixed support condition 

 

4. Discussion  

The effect of edge valency of the vertices and edge valency of faces on the structural stability of 

the given single-layer shell configurations was proposed by comparing the limit load with the 

average edge valency. The results were obtained for dome configurations with the different rise-

to-span ratios, the support conditions, and the loading cases. As the weight of the structures was 

not identical among the three configurations, a parameter λ was used to compare the dome 

configurations' stability. 

 

The limit load capacity increases with the increase in the average edge valency of the vertices 

and decreases with the increase in the average edge valency of the faces. This result was found to 

be valid irrespective of the two support conditions, the rise of the structure and the loading 

pattern. The higher value of the average edge valency provides more rigidity to the joint system 

and increases the stability of the configuration. On the other hand, the increase in the average 

edge valency of the faces reduces the planar rigidity of the faces, which reduces the buckling 

load of the structure. Both the valences (edge valency of vertices and edge valency of faces) are 
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mutually dependent. When the edge valency of vertices increases for a configuration, the edge 

valency of faces reduces automatically to satisfy the configuration uniformity. Hence, the higher 

edge valency of vertices, which results in the lower edge valency of faces, increases the stability 

of the dome configuration. 

 

The impact of edge valency is very high for structures like single-layer domes, where the number 

of members used is very high compared to any other structure. Deciding the optimum valency 

will reduce the number of members and the fabrication, which will reduce the overall cost of the 

system. Optimizing the valency also increases the lightness of the structure and saves the 

construction materials. The optimized configuration can have sufficient redundancy so as not to 

compromise stability. It requires rigorous study of the configurations with several iterations to 

optimize resistance and material utilization. 

 

 

 
 

(a)                                                                                       (b) 

                      

 
 

       (c)                                                                                        (d) 

 
Figure 14: The variation of limit load capacity of the dome configurations in terms of the parameter λ with the 

average edge valency of the vertices and the average edge valency of the faces under semi-span gravity loading: (a) 

comparison with average edge valency of vertices for the domes with pinned support condition  (b) comparison with 

average edge valency of faces for the domes with pinned support condition (c) comparison with average edge 

valency of vertices for the domes with fixed support condition (d) comparison with average edge valency of faces 

for the domes with fixed support condition 
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The present study considers the edge valency of vertices and the edge valency of faces. Even 

though the parameter λ helps to nullify the difference in the weight of the structure, the number 

of members and the joints used are different for the three configurations (Table 2). These 

additional parameters also play a crucial role in the stability of the domes. The variation in 

member lengths across configurations is kept as minimum as possible. However, individual 

member lengths are different across the three configurations. As the critical load is governed by 

its effective length, variation in the individual member length also contributes to the stability of 

dome configurations, which was not considered in this study. The members are rigidly connected 

for the three single-layer configurations. As the number of vertices is different, the global 

stability of the dome configurations is affected by the number of vertices. A multi-level 

optimization helps to include these parameters together. However, it is difficult to understand 

which parameter affects what as optimizing one will vary the others. For example, keeping the 

number of edges equal in the three configurations will result in massive differences in vertices 

and faces. Hence, considering the effect of all the parameters in a single study is complex and 

avoided in the present study. 

 

The advantages of bringing the parameters (vertices, edges, and faces) into the stability of the 

dome configurations are many. Optimizing the chosen parameters will help to reduce the 

redundancy of the structure without compromising stability and overall load resistance. For 

example, the complete triangulated system with rigid joints is not required when the load 

requirement of the domes is not high. The study of edge valency will optimize the faces, which 

helps to reduce the number of connections and members. The rigorous analysis of the parameters 

can reduce the dependency on commercial software packages to study reticulated domes' 

performance. Different design parameters such as load capacity can be qualitatively and 

quantitatively examined with defined parameters as the variable inputs. Hence, further studies on 

parameters such as valency and dimensionality are helpful in the optimum design of reticulated 

structures such as domes.              

 

5. Concluding remarks 

The effect of edge valency on the overall resistance of single-layer reticulated steel domes is 

studied by considering three configurations with varying parameters. The effect of support 

conditions, unsymmetrical loading on the structure, and the change in rise-to-span ratios are 

analyzed while studying the dependence of limit load on the edge valency of vertices and edge 

valency of faces. The significant conclusions arrived from this study are: 

 

 The overall resistance of the dome configuration increases when the edge valency of the 

vertices increases and the edge valency of the faces decreases. The increase in edge 

valency of the vertices increases joint stiffness, and reducing face valency increases the 

in-plane stiffness of the structure. As dome structures are doubly curved, both factors 

influence the structure's overall stability. 

 The impact of support rigidity is least for configuration V.6.6.6 and high for 

configuration V.3.3.3.3.3.3. Hence, vertices with high average edge valency provide 

maximum stability and reduce dependence on support rigidity. 

 Unsymmetrical loading reduces the overall resistance of the structure compared to full 

span gravity loading. The reduction in the load capacity with unsymmetrical loading is 
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minimal for configurations with high average edge valency of the vertices and low 

average edge valency of the faces. 
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