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Abstract

A widely used approach to understand and analyze the complex behavior of a structural member 
is  to  decompose  the  complex  phenomenon  into  simpler  ones.  In  thin-walled  members  the 
deformations are frequently decomposed into the following behavior modes: global  distortional 
local-plate,  shear  and  transverse  extension.  A  practical  realization  of  this  approach  is  the 
constrained finite element method (cFEM). Whilst the cFEM is readily applicable for a wide range 
of problems, still, a disadvantage of the currently available cFEM is that it is based on a specific 
rectangular shell finite element. This imposes two major restrictions: (i) highly regular rectangular 
mesh  is a  must,  and  (ii)  the  potential  benefits  of  the  various  available  shell  elements  cannot  be 
utilized. The aim of the reported research is to release these restrictions set by the cFEM-specific 
shell element. The idea is to use two discretizations and two corresponding basis function systems. 
One is an ordinary shell finite element discretization, the other is the specific cFEM discretization. 
The basis functions of the cFEM are transferred to the ordinary shell model, then the calculations 
are completed in the ordinary shell model but with using the cFEM basis functions. The key step 
is the transfer of the cFEM basis functions, which can be realized by mapping between the nodal 
displacements of the two shell models. In the paper the proposed method is briefly introduced and 
some proof-of-concept examples are presented, with a special focus on members with holes.

1. Introduction

Cold-formed  members  are  frequently  found  with  holes  in  their  webs.  Typically  in  low-rise 
buildings,  cold-formed  steel  studs  and  joists are  provided  with  slotted  holes  to  accommodate 
electrical  conduits  (and  other  services).  Steel  box  girders  commonly  have  access  holes  for 
inspection  drilled  into  the  flange  or  web.  In  airplanes,  holes  can  also  be  found  in  numerous 
structural details, e.g., in the ribs attached to the main spar of an airplane wing. In thin-walled cold- 
formed structures, elastic buckling and load-bearing capacity are closely related; holes' presence 
may  promote  unique  elastic  buckling  modes  that  may  affect  buckling  loads  as  well  as  collapse 
mechanisms at an ultimate limit state. Depending on the size, shape, and arrangement of the holes, 
such  holes  can  reduce  both  buckling  capacity  and  overall  strength.  Buckling  is,  thus,  a  crucial 
aspect of the behavior of thin-walled perforated cold-formed steel structures (PCFS).
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Numerous research projects have investigated members with holes during the last few decades, 

with many publications. The buckling behavior of PCFS sections depends not only on the 

reduction in cross-sectional properties but also on the stress concentration caused by perforations. 

As with ordinary cold-formed steel sections, PCFS sections may also buckle locally (L), 

distortionary (D), and globally (G) due to loading. Because of the wide variety of perforations and 

their sizes, it is difficult to directly define the critical buckling stresses of PCFS sections (Moen & 

Schafer, 2009).  It is essential to understand and be able to analyze these buckling phenomena 

separately. For an ordinary cold-formed steel section, there are many proposed methods for modal 

decomposition from which generalize beam theory (GBT), constrained finite strip method, and 

constrained finite element method (cFEM) are the most widely known. For PCFS, several attempts 

have been made for a similar purpose. 

 

For cold-formed steel columns and beams with holes, simplified methods for approximating 

global, distortional, and local critical elastic buckling loads were also developed and summarized 

in (Moen & Schafer, 2009). There are also numerical methods that have also been proposed 

specifically for the analysis of thin-walled members with holes. In (Yao & Rasmussen, 

2011), finite strip method (more specifically: iso-parametric spline FSM) is proposed and applied 

to members with holes, especially when a large number of smaller holes are present in a regular 

distribution, such as in rack uprights. In (Cai & Moen, 2016) and (M. Casafont, J. Bonada, M.M. 

Pastor, 2016), GBT-based methods are presented with two different approaches; the first proposes 

to handle the perforated member as an assembly of simple sub-members and define the cross-

section modes on the sub-members, the second proposes to define the cross-section modes using 

the unperforated cross-section shape while including the effect of holes. These methods are 

relatively complicated, and still, their applicability seems to become problematic as soon as the 

hole shape or hole pattern is complicated (e.g., curved holes). In (Ádány, 2017), the cFEM method 

for members with holes is proposed. Due to its specific rectangular finite element shape, only 

rectangular holes can precisely be modeled, and curved holes can be approximated with unnatural 

meshing configuration. 

  

To overcome the limitation of cFEM in analyzing elastic buckling of members with holes, 

the 'Constrained finite element analysis with displacement mapping' is introduced. This paper aims 

(i) to present a brief concept of constrained finite element analysis with displacement mapping and 

(ii) to illustrate it by numerical examples in analyzing elastic buckling of thin-walled members 

with holes. For this purpose, the constrained finite element method with mapping will shortly be 

summarized in Section 2. Then numerical examples for handling members with the holes will be 

presented and discussed in Section 3.  

 

 

2. Constrained finite element method with displacement mapping 

 

2.1 The constrained finite element method 

The constrained finite element method is a shell finite element method with modal decomposition 

capabilities. Through mechanical constraints, the buckling modes are separated. The application 

of the right mechanical criteria results in on alternative basis system for the displacement field that 

is defined by the finite element nodal degrees of freedom: the practical benefit is that the 

deformation spaces are separated. 



 

 

If the constraints are applied to a member without any additional elements, the 𝐝 displacement 

vector can be expressed by the 𝐝𝐌  modal displacement vector and the 𝐑𝐌 constraint matrix 

specific to a given M deformation space, as: 

 

 𝐝 = 𝐑𝐌𝐝𝐌 (1) 

 

The buckling problem, mathematically, requires the solution of a generalized eigen-value problem, 

as follows:  

 

 𝐊𝐞𝚽 − 𝐊𝐠𝚲𝚽 = 𝟎 (2) 

 

where 𝐊𝐞 and 𝐊𝐠 are the elastic and geometric stiffness matrices, 𝚲 contains the eigen-values (i.e., 

critical load multipliers), and 𝚽 contains the eigen-vectors (i.e., buckled shapes). Whenever modal 

decomposition is applied to a linear buckling problem, Eq. 1 is substituted into Eq. 2, which leads 

to another generalized eigen-value problem, given in the reduced M deformation space, as follows: 

 

 𝐑𝐌
T𝐊𝐞𝐑𝐌𝚽𝐌 − 𝐑𝐌

T𝐊𝐠𝐑𝐌𝚲𝚽𝐌 = 𝟎 (3) 

 

The benefit of modal decomposition is that the calculation is in a reduced (i.e., constrained) 

deformation space, and these deformation spaces can be pre-defined, as described above. For 

example, the linear buckling analysis can be done for the L deformations only by applying Eq. 1, 

meaning that all the buckled shapes will meet the mechanical criteria of L deformations; in other 

words, all the buckled shapes will be local. The calculation in a constrained deformation space is 

realized by selecting only those modal basis vectors that belong to the desired deformation mode 

space.  

 

The cFEM is based on a specific shell element with a specific set of shape functions. The specific 

shape functions were chosen so that the mechanical criteria would be satisfied within each shell 

element and that the mechanical criteria would be exact. For detailed information, see (Ádány, 

2018) and (Ádány et al., 2018). This is a nice feature of the existing cFEM procedure, which 

contributes to the precision and numerical stability of the calculations. However, the specific 

cFEM shell element is a flat rectangular element; it is suitable for many classic thin-walled steel 

problems but not always the best. That is why our effort is to make the constraining technique 

more general, i.e., constraining with ordinary shell finite elements. 

 

2.2 The mapping procedure 

The key idea of the constrained finite element method, which requires specific shape functions, is 

the modal decomposition which results in the separation of the deformation spaces. If we want to 

apply a generic shell element, the specific shape functions are not an option. One possible approach 

to – at least approximately – overcome this contradiction is mapping. The idea is to approximate 

the analyzed domain using two different discretizations, i.e., two different sets of basis functions. 

For one of the discretizations, an ordinary shell element is used; the basis functions, therefore, are 

determined by the shape functions of the selected ordinary shell element. For the other 

discretization, the specific cFEM shell elements are used; from this, an alternative basis function 

system is generated by using the shape functions of the cFEM shell element. In the former basis 

system, the stiffness matrices, load vectors, etc., are generated, and technically speaking, the 



 

 

solution is obtained in the ordinary basis system. However, if modal decomposition is intended, 

the specific cFEM basis system, i.e., the basic functions of a constrained space, is mapped into the 

ordinary basis system, which means that the separated deformation space can now be generated in 

the ordinary basis system (e.g., if only the global basis functions are selected, then the solution can 

be obtained directly for the global modes). 

 

A physical domain is approximated using the ordinary shell finite element, its basis system is 

denoted as (u1, u2, u3, ..., um ) from which a deformation u-space is defined. Another basis system 

based upon constrained shell finite element discretization can be used for the same (or similar) 

physical domain: the deformation space that is generated by this system is denoted as a x-space 

(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛). Let us assume that the x-space can be mapped into the u-space as: 

 

 𝑥𝑖 = 𝑥𝑖(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚) (4)  

 

Once the explicit form of Eq. 4 is defined, any 𝐝(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛) displacement vector in the x-

space can be mapped into the u-space as a displacement vector 𝐝(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚). It is worth 

mentioning that it is more convenient to use a similar but not necessarily identical physical domain 

in the cFEM basis system in some problems. As in the case of PCFS members, holes can be 

disregarded, and the cFEM discretization can be done on the unperforated member. 

 

For mapping procedures, two techniques are employed in this paper. In the first approach, which 

is referred to as the non-condensation mapping, at i-th node in the ordinary element basis system, 

the displacement of that node, i.e., its degrees of freedom, are calculated directly from the 

displacements expressed in the cFEM nodal displacements and the cFEM shape functions. 

Consider the X degree of freedom (e.g., U, V, W, ROTX, ROTY, ROTZ, which correspond 

respectively to translations in x, y, z, and rotations around x, y, z axes) at the i-th node in target 

element basis, i.e., the ordinary element basis. Then its value can be calculated as: 

 

  𝑿𝒊 = 𝑓(𝑑𝑐𝐹𝐸𝑀 , (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖), {𝑁𝑐𝐹𝐸𝑀}) (5) 

 

in which  𝑿𝒊  is the degree of freedom (DOF) of the i-th node in the ordinary base, 𝑑𝑐𝐹𝐸𝑀  is the 

displacement vector in cFEM base, (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) is the coordinate of the i-th node and {𝑁𝑐𝐹𝐸𝑀} is the 

set of shape functions of the cFEM element. The 𝑓 operator is, indeed, the calculation of the 

displacements (e.g. U, V, W, etc…) of a point at the position  (𝑥𝑖, 𝑦𝑖 , 𝑧𝑖) using cFEM shape 

functions. 
 

In the second approach, henceforth referred to as the condensation mapping, the degrees of 

freedom 𝑢𝑖   of the i-th node in the ordinary element basis system are separated into two groups: a 

translational one, i.e., U, V, W, which are the translations in x, y, and z axes of the i-th node, 

respectively; and a rotational one, i.e., ROTX, ROTY, ROTZ,  which are the rotational of i-th node 

about x, y, and z axes.  

 

For the X degree of freedom, which belongs to the translational group 𝐝𝐓, the  𝑿𝒊 is calculated in 

a similar manner as in the non-condensation mapping technique, using Eq. 5. For the remaining 

rotational 𝐝𝐑  degrees of freedom in  𝐝(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚) , static condensation is adopted as 

follows: 



 

 

 

 [
𝐊𝒆,𝒕𝒕 𝐊𝒆,𝒕𝒓

𝐊𝒆,𝒓𝒕 𝐊𝒆,𝒓𝒓
] [

𝐝𝐓

𝐝𝐑
] = [

𝐟𝐓

0
] (6) 

 

in which 𝐝𝐓  is the translational displacement vector in the ordinary basis, 𝐝𝐑  is the rotational 

displacement vector in the ordinary basis, and 𝐊𝒆,𝒕𝒕, 𝐊𝒆,𝒓𝒓, 𝐊𝒆,𝒕𝒓 and 𝐊𝒆,𝒓𝒕 are the partitions of the 

elastic stiffness matrix. From the second equation of Eq. 6 𝐝𝐑 can be expressed (formally) as: 

 

 𝐝𝐑 = (𝐊𝒆,𝒓𝒓)−𝟏(−𝐊𝒆,𝒓𝒕𝐝𝐓) (7) 

 

In the cFEM, modal decomposition generates the 𝐑𝐌 constraint matrix, of which each of its 

column is considered as a displacement vector. The 𝐑𝐌 contains ‘r’ displacement vectors  that 

form the basis vectors for the given ‘M’ deformation space. Accordingly, the above-described 

mapping procedure can transform 𝐑𝐌(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)  in the x-space  into the u-space as 

𝐑𝐌(𝑢1, 𝑢2, 𝑢3, … , 𝑢𝑚) . As a result of this transformation, the constraint matrix 𝐑𝐌 can possibly 

be expressed in the u-space of the ordinary shell, and the constraint analysis can readily be 

performed within the u-space, i.e., the steps of the constrained linear buckling problem follow 

Eq.1, 2, and 3, respectively. 

 

2.3 Ordinary shell elements 

As described in the previous Section, ordinary shell elements are required to map the cFEM basis 

functions. This paper employs an ordinary shell finite element, denoted as QUAD8. These 

elements are created by combining a 2D membrane element and a plate element based on the 

Reissner- Mindlin plate theory. It is an 8-node general quadrilateral element with 6 DOF per node, 

see Fig 1. Accordingly, local parametric coordinate systems are employed within the element, and 

the calculation of the element stiffness matrix is completed by numerical integration. It is worth 

pointing out that all these features contrast with the cFEM shell element, which must be 

rectangular, which is based on the Kirchhoff-Love plate theory, and in which analytical integration 

is used in the stiffness matrix formation. 

 

It is to note that the implementation of our QUAD8 element is generated using the second-order 

Serendipity shape functions family, which is practically identical with the ANSYS shell281 

element (ANSYS, 2018). 

 

 
Figure 1:  Demonstration of QUAD8 quadrilateral element. 



 

 

3. Numerical examples 

In this Section numerical examples are presented to illustrate the concept and potential of the 

proposed constrained analysis with mapping.  Linear elastic isotropic material model is adopted 

for all the examples, with a modulus of elasticity of 210 GPa and Poisson’s ratio of 0.3. Linear 

buckling analyses are conducted for a 1000 mm channel section with a uniform thickness of 1 mm. 

The channel depth is 100 mm, with 60 mm flange widths and 10 mm lip length. Nine evenly placed 

circular holes are inserted into the web with a radius of 40 mm, and 10 mm apart from each other 

along the member length. At the member ends, 100 mm are left without perforation. Unconstrained 

and constrained buckling analyses are conducted on the member which is fixed at one end; at the 

other end only the longitudinal deformation is allowed, and a uniform normal distributed load is 

applied. This example closely follows the one presented in (Duan et al., 2022), however, with the 

differences that the applied load is a uniform distributed force instead of the uniform displacement 

load, and that quadratic finite elements are used instead of linear ones.  

 

3.1 Comparison unconstrained and constrained analyses 

In (Duan et al., 2022) study, the first few buckled shapes of the similar member are mostly the 

combination of distortional buckling modes and local modes with small percentages of other 

buckling modes at those cross-sections close to member ends. So that, the constrained buckling 

analysis is performed with restriction to distortional-local space, i.e., only L, D, and their 

combination are occurred. 

 

The unconstrained analysis is performed both by ANSYS with quadratic shell finite element and 

by our own software using QUAD8 elements. The total number of elements is 7879 and 7824, 

respectively. As indicated in the previous Section, the constrained analysis with displacement 

mapping requires a cFEM discretization together with a target QUAD8 discretization. For cFEM 

discretization, the member is treated as a common channel, i.e., the holes are ignored, with 574 

elements in total.  

 

In Table 1, the critical loads of the first five buckling modes obtained by ANSYS shell 281 finite 

element analysis and QUAD8 shell finite element analysis and the constrained finite element 

analysis with displacement mapping are presented. This analysis uses the condensation mapping 

technique. Note that the ANSYS shell 281 and QUAD8 are practically identical; though the 

meshes are not identical, the number of elements can be considered the same. Expectedly, the 

critical loads are practically identical, with the first five modes' differences being less than 0.1%. 

The critical load of the constraining to LD buckling shows systematically higher values; the 

differences are varied from 1.32% to 6.31%. These results are as expected, since in the 

unconstrained analysis there are certain other modes that appear in the buckled shape in addition 

to the local and distortional mode, e.g., transverse extension modes, shear modes. However, in the 

constrained analysis the buckling is forced to distortional-local buckling only; consequently, the 

member behaves slightly stiffer than the unconstrained one, leading to slightly higher critical loads. 

The results also suggest that in those modes in which the local buckling is governing the 

discrepancy is smaller than in those with governing distortional buckling. 

 

The corresponding buckled shapes are shown in Fig. 2a-e. It is worth mentioning that the 

unconstrained buckled shapes in the case of ANSYS shell 281 and QUAD8 are exactly identical; 

only the ANSYS buckled shapes are shown here.  



 

 

 
a) First buckled shape, ANSYS 

 
f)  First buckled shape, QUAD8 

 
b) Second buckled shape, ANSYS 

 

g)  Second buckled shape, QUAD8 

 
c) Third buckled shape, ANSYS 

 
h)  Third buckled shape, QUAD8 

 
d)  Fourth buckled shape, ANSYS 

 
i)  Third buckled shape, QUAD8 

 
e) Fifth buckled shape, ANSYS 

 
k)  Fifth buckled shape, QUAD8 

Figure 2: Buckled shapes of the member subjects to axial compressive load, unconstrained analysis with ANSYS 

shell 281 (a-e) and constrained to distortional-local buckling QUAD8 (f-k) 
 



 

 

It can be seen in the buckled shapes of unconstrained analysis, the first, second, and fourth modes 

are governed by distortional modes. The first buckling mode is a symmetrical mode with a single 

half-wave, the second mode is also a symmetrical mode but with two half-waves, the fourth mode 

is a point symmetrical mode with two half-waves. In the third mode, the local buckling of the 

unperforated web is obviously more visible compared to other modes. The fifth buckled mode is 

governed by local buckling, which can be clearly seen in the flanges and the web. As the buckled 

shapes of the constrained analysis are concerned, they are very similar to the unconstrained ones. 

This observation confirms that these unconstrained modes are mostly combinations of local and 

distortional modes. 

 
Table 1:  Critical load of member subjected to axial compressive force: constrained and unconstrained buckling 

analysis  
Critical load [kN] 

 
mode 1 mode 2 mode 3 mode 4 mode 5 

ANSYS shell281 22.69 25.93 27.96 36.37 39.72 

QUAD8 22.70 25.92 27.95 36.33 39.75 

Constrained to LD space 23.61 27.54 28.66 38.62 40.27 

Relative difference 3.98% 6.24% 2.53% 6.31% 1.32% 

 

 

3.2 Effect of mesh configurations 

With adequately selected cFEM discretization and ordinary QUAD8 discretization, the 

constrained finite element method with displacement mapping shows reasonable linear buckling 

analysis results. Since two independent mesh configurations are involved in the mapping 

procedure, it is essential to know the effect of each mesh on the accuracy of analysis results. The 

previous example is repeated with systematically arranged discretization schemes in cFEM and 

ordinary QUAD8. There are four different mesh configurations for cFEM discretization, of which 

the mesh density is a parameter corresponding to 110, 220, 330, 574 elements, see Fig. 3a-d. In 

ordinary QUAD8 discretization, a similar manner is established with four different mesh densities 

corresponding to 672, 1296, 2680, and 7824 elements, see Fig. 3e-h. Linear buckling analyses are 

performed, and the first ten buckling modes are collected: both critical loads and buckled shapes. 

In Table 2 the results are displayed. The relative difference between the constrained critical loads 

with the unconstrained one, i.e., the difference between the critical load of the constrained and 

unconstrained one over the unconstrained critical load, are summarized as an average value of the 

first ten modes. Each row shows how the ordinary discretization affects the accuracy of the 

constrained analysis. Similarly, each column represents the effect of cFEM discretization. The 

results clearly show that the denser the ordinary mesh or the cFEM mesh, the more accurate results 

can be archived. The results also indicate that the ordinary mesh has slower improvement in the 

accuracy compared to the cFEM mesh. For example, in the first row, the difference between oF3 

and oF4 is only 0.5% with approximately four times number of element. In contrast, with the first 

column, the difference between cF1 and cF3 is roughly 10% with only three times increasing of 

total element number. Though, this observation alone is not necessarily true for all types of 
problems. 



 

 

 

a) cFEM mesh #1, 110 elements (cF1) 

 

e)  QUAD8 mesh #1, 672 elements (oF1) 

 

b) cFEM mesh #2, 220 elements (cF2) 

 

f) QUAD8 mesh #2, 1296 elements(oF2) 

 

c) cFEM mesh #3, 330 elements (cF3) 

 

g) QUAD4 mesh #3, 2680 elements (oF3) 

 

d) cFEM mesh #4, 574 elements (cF4) 

 

h) QUAD4 mesh #4, 7824 elements (oF4) 

  

 

 

    

    

Figure 3: Meshing configurations in cFEM basis and ordinary QUAD8 basis: a-d cFEM discretization, e-h ordinary

QUAD8 discretization.

Table 2: Effect of different discretization schemes on the mapping critical loads.

oF1 oF2 oF3 oF4 

cF1 16.7% 15.3% 14.6% 14.1% 

cF2 8.0% 6.2% 5.6% 5.3% 

cF3 6.7% 4.7% 3.8% 3.5% 

cF4 5.2% 3.3% 3.0% 2.7% 



 

 

Table 3: Relative different critical loads constraining to local-distortional buckling, cF4 discretization scheme  
oF1 oF2 oF3 oF4 

Mode 1 8.3% 5.3% 4.1% 4.0% 

2 8.1% 6.3% 6.2% 6.2% 

3 3.3% 3.3% 2.7% 2.5% 

4 7.8% 6.7% 6.5% 6.3% 

5 5.5% 1.9% 1.6% 1.3% 

6 3.3% 1.9% 1.6% 1.4% 

7 3.5% 1.9% 1.6% 1.3% 

8 4.1% 1.9% 1.6% 1.4% 

9 4.4% 2.2% 2.0% 1.7% 

10 4.4% 2.1% 1.6% 1.3% 

 

In Table 3 critical loads of the first ten modes of the linear buckling analyses, in which the 

constrained analysis is performed with a cF4 discretization scheme in cFEM base and four 

different ordinary QUAD8 discretization schemes, are shown. Each value in the table is a relative 

difference of constrained critical load and unconstrained one with identical discretization. It is 

worth noting that these differences are cumulative from 2 sources: the inaccuracy introduced by 

the mapping approximation procedure and the constraining itself. Although the distortional and 

local modes govern the unconstrained buckling deformation, there is a small contribution from 
other modes, e.g., transverse extension and shear modes, too. 

 

According to the results, it is clear that the denser mesh yields closer to the unconstrained critical 

load. It is logical as the denser ordinary discretization approximates better the displacement space 

to which the buckling is constrained. It can be seen that the differences are more significant in the 

first four modes; note that distortional buckling governs these modes. Then it significantly drops 
from mode #5 to mode #10, where local buckling is governing. 

 

The discretization schemes not only affect the critical load but also has an impact on the buckled 

displacement shapes. Fig. 4 and Fig. 5 show the buckled shapes of the first and fifth modes. In Fig. 

4 the cFEM discretization scheme is the coarsest mesh cF1, see Fig. 3a, while in Fig. 5 the finest 

cFEM discretization scheme cF4 is selected, see Fig. 3d. In both figures, the ordinary QUAD8 

discretization schemes oF1 cases are presented in the left column, and in the right one, the oF4 

cases are shown (the coarsest and the most refined mesh ordinary QUAD8 discretization). It can 

be observed that the first buckled shapes are practically identical with all discretization settings 

and also identical to the first unconstrained buckled shape in Fig. 2a. However, the fifth buckled 

shapes of the constrained analysis are firmly dependent on the discretization setting; the coarse 

cFEM and ordinary discretization are the less likely local buckled shapes shown up, the finer cFEM 

and ordinary discretization, the closer to unconstrained buckled shape. Only in Fig. 6d (the most 

refined cFEM discretization and the ordinary QUAD8 discretization), the buckled shape is similar 
to the unconstrained one, as shown in Fig. 2e. 

 



 

 

 

a) First mode with oF1 scheme 

 

b) First mode with oF4 scheme 

 

c) Fifth mode with oF1 scheme 

 

d) Fifth mode with oF4 scheme 

Figure 4: Buckled shapes of the constrained analysis with cF1 scheme for cFEM mesh  

 

 

a) First mode with oF1 scheme 

 

b) First mode with oF4 scheme 

 

c) Fifth mode with oF1 scheme 

 

d) Fifth mode with oF4 scheme 

Figure 5: Buckled shapes of the constrained analysis with cF4 scheme for cFEM mesh 

 

3.3 Constraining to global, distortional, and local spaces 

The same member with the perforated web is analyzed with constraining to global, distortional 

and local buckling separately. In this analysis, only the densest mesh in both discretization schemes 

are chosen, i.e., cF4 in cFEM and oF4 in ordinary base. In order to capture the effect of holes on 



 

 

the buckling behavior of the member, the analyses of the identical member without holes are 

performed; the analyzed results are compared to the linear buckling analysis of the identical 

member but without holes. Buckling analysis of the member without holes is conducted with the 

original cFEM software; critical loads and buckled shapes are both collected.   

 

In Table 4, critical loads of the first buckling modes are presented for the member with the 

perforated web and the critical load of the member without perforation. The associated buckled 

shapes are collected in Fig. 6. 

 

The appearance of holes on the web does not change the nature of the buckling phenomenon in 

the case of pure G, D, and L buckling, i.e., the buckled shapes remain (nearly) the same, see Fig. 

6a-f, though it significantly reduces the global buckling critical load and the distortional buckling 

critical load. This result is logical and expected since it is well-known that the cross-section inertia 

has an essential role in the global buckling resistance; with the appearance of holes, the cross-

section inertial is reduced significantly, which results in 22% less critical load. This fact is also the 

main reason for the reduction of the distortional buckling critical load; since the out of plane 

deformation of the web has an important role in the distortional behavior of the member, it is 

obvious that the significant number of holes on the web reduces its ability to resist the out of plane 

deformation that is why the distortional buckling critical load is decreasing. 

 

While having a negative impact on global and distortional buckling resistance, the perforation on 

the web has an impressive positive impact on the local buckling resistance of the member. Local 

buckling critical load increases about 17% with the perforated web compared to the unperforated 

one. The authors believe that stress redistribution in the perforated web is the main contributor to 

this effect; with the missing material in the position of the hole, stresses in the web is carried 

through the relatively small part close to the web-flange junction, which has much stronger 

resistance to buckling compared to the plate buckling resistance of the web in case of an 

unperforated member. 

 

One important feature of the constrained finite element method is that buckling spaces can easily 

be combined. In this example, the combination of G+D, G+L, D+L modes analyses are conducted. 

For G+D and G+L analysis, there is no surprise that the first buckling mode of G+D is a distortional 

buckling, and the first buckling mode of G+L is local buckling, regardless of the appearance of 

holes. For the L+D mode analysis, however, the appearance of holes just slightly reduces the 

critical load of the first buckling mode, 1% reduction. A dramatic change occurs in buckled shape 

in the member with holes; the first buckling mode of a member without holes is clearly the local 

buckling of the web plate, while in the case of a perforated member, it is a distortional one, see 

Fig.7g-h. 

 
Table 4: First critical buckling load with different constraining space  

G D L G+D G+L D+L 

Unperforated  [kN] 229.31 41.02 23.89 40.93 23.89 23.84 

Perforated       [kN] 176.69 33.39 28.01 33.31 28.23 23.61 

Effect of holes [%] -22.95% -18.61% 17.26% -18.62% 18.19% -1.00% 

 



 

 

 

a) G  

 

b) G  

 

c) D  

 

d) D  

 

e)  L 

 

f) L 

 

g) D+L 

 

h) D+L 

Figure 6: First buckled modes with constrained buckling analysis: (a) (c) (e) (g) unperforated members, (b) (d) (f) 

(h) perforated members. 

 

3.4 Condensation vs non-condensation mapping technique 

In this Section the constrained analyses of the same member are conducted with constraining into 

distortional-local space as performed in Section 3.1. The change is that the non-condensation 

technique, which has been introduced in Section 2.2, is used now. The cFEM discretization scheme 



 

 

is set to the cF4 options, and in the ordinary basis, discretization scheme is a parameter with oF1-
oF4 options. 

 

The critical loads of the first five buckling modes are collected in Table 5 and Table 6, both 

condensation and non-condensation technique results are presented with various QUAD8 

discretization schemes, from left to right the mesh density is increasing. In Table 5 the absolute 

critical values, in Table 6 the relative differences compared to the unconstrained buckling critical 

loads, i.e., a relative difference is calculated as a constrained critical load minus the unconstrained 

critical load relative to the unconstrained value, are displayed. From Table 5 and especially Table 

6, it can be seen that, with a proper dense mesh, e.g., oF3 or oF4, the condensation and non-

condensation yield practically the same results, though the non-condensation results are still 

slightly higher than the condensation one. In the case of coarse mesh, the non-condensation yields 

a much higher critical load than the condensation one, technically speaking, with coarse ordinary 

discretization the results of non-condensation mapping are not reliable. The main explanation is 

that in the non-condensation technique, all DOFs of the nodes are forced to deform according to 

the pre-defined cFEM modal functions, while only the translation DOFs are forced to in the 

condensation technique. This fact indeed results in a more flexible system in the case of 
condensation and consequently a slightly lower critical load. 

 

Table 5: Critical loads [kN] of the member subjects to axial load: constraining to distortional local buckling with 

condensation and non-condensation mapping technique. 

 Non-condensation Condensation 

Mesh scheme oF1 oF2 oF3 oF4 oF1 oF2 oF3 oF4 

Mode 1 28.03 25.03 23.96 23.77 25.76 24.33 23.76 23.61 

2 30.58 28.50 27.80 27.71 28.73 27.78 27.59 27.54 

3 37.30 29.59 28.89 28.81 29.65 28.91 28.71 28.66 

4 43.60 40.31 39.27 39.00 40.90 39.19 38.78 38.62 

5 47.38 42.68 41.13 40.77 43.81 40.81 40.41 40.27 

 
Table 6: Relative difference of the constrained critical loads [%] compared to the unconstrained ones: constraining 

to distortional-local buckling with condensation and non-condensation mapping technique. 

 Non-condensation Condensation 

Mesh scheme oF1 oF2 oF3 oF4 oF1 oF2 oF3 oF4 

Mode 1 17.84% 8.30% 5.02% 4.68% 8.28% 5.28% 4.14% 3.98% 

2 15.08% 9.03% 6.99% 6.87% 8.12% 6.27% 6.18% 6.24% 

3 28.64% 5.76% 3.38% 3.05% 2.26% 3.31% 2.73% 2.53% 

4 14.88% 9.71% 7.82% 7.33% 7.79% 6.66% 6.45% 6.31% 

5 14.11% 6.58% 3.37% 2.57% 5.53% 1.90% 1.59% 1.32% 

 

4. Summary 

This paper introduces the method of constrained finite element analysis with displacement 

mapping. The conceptual details of the proposed method and proof-of-concept numerical 

examples are shown. The proposed method shows its ability to perform the constrained analysis 

with an ordinary shell finite element. Especially for a perforated member, i.e., a channel member 

with circular holes in the web plate, the proposed method has overcome the limitation of the 



 

 

original cFEM of the rectangular element with promising results. The proposed method has shown 

good analysis results with properly selected discretization schemes. Comparison to commercial 

ANSYS software results has been made, which validates the proposed method. Some remarks 

from the numerical examples are listed as follows: 

i. The discretization schemes in both cFEM and ordinary QUAD8 basis have an essential 

impact on the accuracy of the buckling analyses. The denser the discretization is, the better 

accuracy is achieved. 

ii. Two variants of the displacement mapping technique was proposed, and both work well 

with properly selected discretizations. The condensation technique often results in a lower 

critical value due to loose links between cFEM and ordinary basis. 

iii. The conducted numerical studies show that the appearance of holes reduces the member's 

global and distortional buckling resistance while it can increase the local buckling 

resistance. Also, the appearance of holes can transform the nature of the buckling 

phenomena in the channel member. All these observations are in accordance with earlier 

findings, which justify the applicability of the proposed method. 
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