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Abstract 
Accurate predictions of the elastic buckling and ultimate moments of steel decks in bending are 
essential for obtaining economic and safe designs. The existing design methods give accurate 
results for some deck profiles while producing unsafe or overly conservative predictions for others. 
This paper explores machine learning in the form of the Support Vector Machine regression (SVR) 
for estimating the elastic buckling and ultimate moments of steel decks. Eight SVR models for 
predicting the following properties of North American steel deck profiles were developed: plate 
buckling coefficient of stiffened flanges, plate buckling coefficient of unstiffened flanges, plate 
buckling coefficient for distortional buckling of deck flanges with a longitudinal stiffener, local 
elastic buckling moment of stiffened flanges, local elastic buckling moment of unstiffened flanges, 
distortional elastic buckling moment of a web-edge flange junction, distortional elastic buckling 
moment of a flange-stiffener junction, and ultimate moment. The dataset used for the model 
training, validation, and testing consisted of 1152 finite element simulations performed on deck 
models previously validated on experimental data. The developed SVR models demonstrated a 
good generalization ability and excellent prediction accuracy, which exceeded the accuracy of the 
existing design methods. The SVR models were interpreted by evaluating feature importance and 
feature effects using the SHapley Additive exPlanations (SHAP) method. The obtained feature 
importance and feature effects aligned well with the mechanics-based knowledge, confirming the 
abilities of the SVR models to capture and reveal the underlying physics from the data used for 
the model development. A web application for predicting steel deck properties in bending by the 
developed SVR models was created and deployed to the cloud. It can be opened and run in a 
browser on any device, including mobile. The application’s source code, which was made 
available on GitHub, can be used to run the application on a local machine. 
 
1. Introduction 
Corrugated cold-formed steel (CFS) roof and floor decks have been used in construction 
worldwide. Steel decks are available in many different shapes and offer several benefits, including 
a high strength-to-weight ratio, the economy in transportation and handling, and fast and easy 
installation. The structural design of steel decks is governed by national standards, which generally 
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recognize the Effective Width Method (EWM) and the Direct Strength Method (DSM) (AISI 
S100-16, AS/NZS 4600:2018). 
 
The EWM developed by von Karman et al. (1932) and Winter (1947) considers a part of a thin 
plate ineffective in resisting compression load due to the plate local buckling. The effective width 
is determined by replacing a non-uniform stress distribution in a thin plate after buckling with the 
equivalent rectangular stress distribution. The EWM considers the cross-section elements 
separately, not accounting for their interactions, and requires multiple iterations to determine CFS 
members' section properties. Being based on the concept of local buckling, the EWM does not 
explicitly consider distortional buckling, which may result in unconservative predictions for the 
distortional buckling failures (Yu and Lokie 2006). Steel deck profiles often fail in local buckling 
of stiffened and unstiffened deck flanges. Still, they may also exhibit distortional buckling of 
flange-longitudinal stiffener junctions or web-edge flange junctions when unstiffened edge flanges 
are in compression. It was previously shown that the EWM might provide unconservative 
predictions of the deck strength governed by distortional buckling (Degtyarev 2020a).  
 
In the DSM (Schafer and Peköz 1998, Schafer 2008, Schafer 2019), the CFS member strength is 
a function of buckling loads determined from the elastic buckling analysis of the entire cross-
section. The DSM allows for predicting the CFS member strength governed by distortional 
buckling and the strength of the members optimized by multiple stiffeners, which the EWM cannot 
easily achieve. Despite its many benefits, the DSM demonstrated overly conservative strength 
predictions for flexural members with slender compression elements (Schafer and Peköz 1998, 
Schafer 2008), especially when the cross-sections are not symmetric with respect to the bending 
axis (Dudenbostel and Sputo 2016, Raebel and Gwozdz 2018, Raebel et al. 2020, Oey and 
Papangelis 2020, Degtyarev 2020a). Steel deck manufacturers offer profiles with non-symmetric 
cross-sections and slender compression elements. The DSM underpredicts the flexural strength of 
such profiles, which is undesirable and slows down the DSM adoption by the steel deck industry. 
 
Advanced finite element analysis (FEA), which is capable of accurate predictions of the deck 
strength in bending (Degtyarev 2020a, 2020b, 2020c, and 2020d), can be used as an alternative to 
the EWM and the DSM. However, it requires advanced software, modeling expertise, and 
substantial computational resources, which are not always available to designers. Even when the 
resources are available and designers possess the required skills, computationally intensive FEA 
is not always practical in design.   
 
This study explores the applicability of emerging machine learning (ML) methods to the steel deck 
design, which may provide accuracy comparable with FEA at a low computational cost. ML is a 
branch of artificial intelligence (AI) and computer science that builds predictive models based on 
available data. ML has been successfully applied to many structural engineering problems (Çevik 
et al. 2015, Salehi and Burgueño 2018, Sun et al. 2021), including CFS structures. Artificial neural 
networks (ANNs) were employed for predicting the available rotation capacity of CFS beams 
(D'Aniello et al. 2014, Ali 2017), distortional buckling stress of cold-formed steel members (Pala 
2006, Pala and Caglar 2007),  web crippling strength of cold-formed steel decks (Guzelbey et al. 
2006), shear buckling coefficient of CFS channels with large holes in the web (Pham 2018), shear 
elastic buckling load and ultimate shear strength of CFS channels with staggered web perforations 
(Degtyarev 2021b, 2021c, Naser et al. 2021, Degtyarev and Naser 2021), design load of CFS 
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compression members (El-Kassas et al. 2002), and uplift capacity of metal roof panels (Sirca Jr. 
and Adeli 2001). ANNs were also used for the optimization of CFS beams by Adeli and Karim 
(1997) and Karim and Adeli (1999) and for predicting the strength and deflections of strengthened 
CFS profiles by Taheri et al. (2021). Fang et al. (2021a, 2021b, 2021c) employed a deep belief 
network to predict the web crippling strength and axial capacity of CFS members. Genetic 
programming was applied to formulate the distortional buckling stress of C-sections in 
compression (Pala 2008) and for the optimal design of CFS columns (Lee et al. 2006).  
 
The accuracy of ML models in the reviewed studies exceeded the accuracy of the existing design 
methods and descriptive equations, which makes the use of ML methods for estimating the elastic 
buckling and ultimate moments of steel decks in bending promising. In this study, Support Vector 
Machine regression (SVR) models for predicting the following deck properties were trained and 
optimized using an extensive database of FEA results: 1) plate buckling coefficient of stiffened 
flanges, kl,stiff; 2) plate buckling coefficient of unstiffened flanges, kl,unstiff; 3) plate buckling 
coefficient for distortional buckling of deck flanges with a longitudinal stiffener, kd,flange; 4) local 
elastic buckling moment of stiffened flanges, Mcrl,stiff; 5) local elastic buckling moment of 
unstiffened flanges, Mcrl,unstiff; 6) distortional elastic buckling moment of a web-edge flange 
junction, Mcrd,web; 7) distortional elastic buckling moment of a flange-stiffener junction, Mcrd,flange; 
and 8) ultimate moment, Mu. The developed SVR models were interpreted by obtaining and 
analyzing partial feature importance and feature effects using the SHapley Additive exPlanations 
(SHAP) method. The SVR models demonstrated an excellent prediction accuracy, which 
considerably exceeded the accuracy of the traditional CFS design methods. A web application 
based on the developed SVR models was created and made publicly available. 
 
2. Data Acquisition 
The data required to develop the ML models were obtained from the FEA of North American steel 
deck profiles shown in Fig. 1 and Table 1. The following steel thicknesses were considered: 0.45 
mm (26 GA), 0.60 mm (24 GA), 0.75 mm (22 GA), and 0.91 mm (20 GA) for 1F and 0.75 mm 
(22 GA), 0.91 mm (20 GA), 1.20 mm (18 GA), and 1.52 mm (16 GA) for all other profiles. Four 
steel yield strengths of 228, 276, 345, and 414 MPa were evaluated. The decks were analyzed in 
the positive (top flanges in compression) and negative (bottom flanges in compression) bending, 
which are also referred to as the normal and inverted bending orientations (BO), respectively. 
 
The FEA results of some deck profiles presented in Fig. 1 and Table 1 were previously published 
in Degtyarev (2020a). In this study, 960 additional FE simulations were conducted to cover wider 
ranges of deck variables. The combined database (Degtyarev 2021a) consists of 1408 samples and 
includes the deck with the following span lengths: 914, 1219, and 1524 mm for 1F; 1219, 1829, 
and 2438 mm for 1.5B, 1.5BST1, 1.5BST2, and 1.5BST3; 1829, 2438, and 3048 mm for 2CST1, 
2CST2, and 2CST3; and 3048, 3658, and 4267 mm for 3N, 3CST1, 3CST2, and 3CST3. 
 
The deck was modeled in ANSYS with four-node structural shell elements, SHELL181. The 
material properties were described by an elastic modulus of 2.03×105 MPa, a Poisson's ratio of 
0.3, and nonlinear stress-strain diagrams proposed by Gardner and Yun (2018), with true stresses 
and strains determined per Appendix C.6 of EN 1993-1-5:2006. The models were discretized with 
quadrilateral elements with maximum sizes of 5 and 10 mm in the directions across and along the 
deck span, respectively.  
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Figure 1: Dimensional Parameters of Deck Profiles  

 
Table 1: Dimensions of Deck Profiles 

Deck h 
(mm) 

P 
(mm) 

wtf 
(mm) 

wbf 
(mm)

wl 
(mm)

αw  
(deg)

R  
(mm)

bp 
(mm)

αst  
(deg) 

Number 
of Hats

CW 
(mm)

1F 25 94 20.0 20.0 8.4 46.4 3.2 – – 9 840
1.5B 38 155 79.9 35 17.5 72.5 4.8 – – 6 928
3N 77 204 127 39.7 19.1 83.0 4.8 – – 3 612

1.5BST1 38 155 79.9 35 17.5 72.5 4.8 22.7 30.6 6 928
1.5BST2 38 155 79.9 35 17.5 72.5 4.8 31.8 30.6 6 928
1.5BST3 38 155 79.9 35 17.5 72.5 4.8 27.2 30.6 6 928
2CST1 53 307 121.0 121.0 60.5 64.1 4.8 43.3 30.6 3 920
2CST2 53 307 121.0 121.0 60.5 64.1 4.8 52.4 30.6 3 920
2CST3 53 307 121.0 121.0 60.5 64.1 4.8 34.3 30.6 3 920
3CST1 77 307 114.3 114.3 57.2 67.4 4.8 42.8 36.5 3 920
3CST2 77 307 114.3 114.3 57.2 67.4 4.8 50.3 36.5 3 920
3CST3 77 307 114.3 114.3 57.2 67.4 4.8 35.4 36.5 3 920

 
Fig. 2 shows the boundary conditions of the deck models. They consist of the symmetry degree-
of-freedom constraints at the deck mid-span nodes, vertical translation restraints of the top flange 
nodes at the support, lateral displacement restraint of one node at the deck bottom flange edge to 
prevent rigid body motion, and coupled vertical displacements of deck bottom flange nodes at the 
load location. The models were loaded by a vertical force applied to the primary node of the 
coupled set at L/3 from the support (where L is the deck span). More details on the FE models can 
be found in Degtyarev (2020a).   
 
Elastic buckling and nonlinear static analyses of the deck models were performed. The obtained 
elastic buckling modes were classified as local buckling of stiffened flanges,  local buckling of 
unstiffened flanges, distortional buckling of a flange-stiffener junction, or distortional buckling of 
a web-edge flange junction, as shown in Fig. 3. The loads and bending moments corresponding to 
these buckling modes were determined and stored.  
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Figure 2: Boundary Conditions of FE Deck Models 

 

 

Figure 3: Typical Deck Buckling Modes 
a) Local buckling of a flange stiffened by webs; b) Local buckling of a flange stiffened by a web and a 

longitudinal stiffener; c) Local buckling of an unstiffened flange; d) Distortional buckling of a flange-stiffener 
junction; e)  Distortional buckling of a web-edge flange junction 

 
The ultimate moments were determined from the nonlinear static analysis, which followed the 
elastic buckling analysis. Initial geometric imperfections, as well as material and geometric 
nonlinearities, were considered. The initial geometric imperfections with the magnitude of 1/150 
of the compression flange width were specified based on the first elastic buckling mode obtained 
from the elastic buckling analysis. The FE models of the deck were validated against physical test 
results in Degtyarev (2020a, 2020c). 
 

a) b)

c) d)

e) 
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3. Dataset 
The database of the FE simulation results (Degtyarev 2021a) includes 224 samples for the deck 
profiles with the elastic-perfectly plastic and bilinear steel constitutive models. The previous study 
showed that the elastic-perfectly plastic, bilinear, and nonlinear stress-strain relationships resulted 
in similar ultimate moments (Degtyarev 2020a). Therefore, the 224 results were excluded from the 
dataset, ensuring that each considered combination of the deck variables is represented by one 
dataset sample with the nonlinear material law. The database also includes 32 results for modified 
1.5B and 3N decks, designated as 1.5BR and 3NR in the previous study. These profiles were 
excluded from the dataset because they are not conventional decks available on the market. Thus, 
the Mcrl,stiff, kl,stiff, and Mu dataset used in this study included 1152 samples. For the considered deck 
profiles, local buckling of an unstiffened flange and distortional buckling of a web-edge flange 
junction can only occur for decks in the negative bending. Therefore, the Mcrl,unstiff, kl,unstiff, and 
Mcrd,web dataset included 576 samples. The distortional buckling of a flange-stiffener junction, 
described by Mcrd,flange and kd,flange, was represented by 720 samples.  
 
Fig. 4 shows distributions of the dataset variables, including span length, L; deck height, h; deck 
thickness, t; deck web angle, αw; bend radius at the sheet steel centerline, r; out-to-out widths of 
the top and bottom flanges at the centerline, btfo and bbfo, respectively; out-to-out width of the lip 
(unstiffened edge flange) at the centerline, blo; flange stiffener angle, αst; out-to-out stiffener height, 
hsto; the number of deck hats, Nhats; deck pitch, P; steel yield stress, Fy; the deck bending 
orientation; Mcrl,stiff; Mcrl,unstiff; Mcrd,web; Mcrd,flange; Mu; kl,stiff; kl,unstiff; and kd,flange. The out-to-out 
widths of the flanges (btfo, bbfo, and blo) were used in the models instead of the flat widths because 
the out-to-out widths are usually reported by the deck manufacturers. The αst and hsto values of the 
decks without intermediate longitudinal flange stiffeners were taken as 0. Ranges of the 
independent variables in the dataset were as follows: 914 mm ≤ L ≤ 4267 mm, 25 mm ≤ h ≤ 77 
mm, 0.45 mm ≤ t ≤ 1.52 mm,  46° ≤ αw ≤ 83°, 3.4 mm ≤ r ≤ 5.5 mm, 23 mm ≤ btfo ≤ 137 mm, 23 
mm ≤ bbfo ≤ 128 mm, 10 mm ≤ blo ≤ 64 mm, 0° ≤ αst ≤ 36.5°, 0 mm ≤ hsto ≤ 15 mm, 3 ≤ Nhats ≤ 9, 
93 mm ≤ P ≤ 308 mm, and 228 MPa ≤ Fy ≤ 414 MPa. 
 
Two observations about the plate buckling coefficients of stiffened and unstiffened flanges, with 
values of 4.00 and 0.43 specified in AISI S100-16, can be made from Fig. 4. The dataset kl,stiff 
values between 3.29 and 5.08 reflect the web contribution, which resulted in either a reduction of 
kl,stiff below the theoretical value of 4.00 for a plate simply supported on four sides, or an increase 
of the buckling coefficient above the theoretical value depending on the profile geometry. The 
obtained kl,unstiff values were higher than the theoretical value of 0.43 and ranged between 0.55 and 
8.17. The unexpectedly high kl,unstiff values, which exceeded the kl,stiff values for some profiles, can 
be explained as follows. The theoretical kl,unstiff value of 0.43 was determined assuming an infinitely 
long plate buckled in a single half-wave mode (Timoshenko and Gere 1963). In this study, the 
unstiffened deck flanges had large but finite aspect ratios and exhibited multiple half-wave 
buckling modes (see Fig. 3c), producing high buckling coefficients. The deck webs connected to 
the unstiffened flanges also contributed to the obtained kl,unstiff values. 
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Figure 4: Distributions of Dataset Variables 

 
4. Support Vector Machine Regression 
Predictive models for the deck properties in bending were developed using the ε-SVR algorithm 
proposed by Vapnik and his colleagues (Vapnik 1995, Cortes and Vapnik 1995, Vapnik et al. 1997, 
Smola and Schölkopf 2004). SVR is a supervised ML algorithm that seeks a hyperplane function 
with the maximum ε deviation from the targets and the minimum flatness. The hyperplane ± ε 
defines decision boundaries insensitive to ε. The "soft margin" constant, C, is introduced to account 
for outliers, which often exist in practical applications and impede finding a hyperplane that 
approximates the data with ε precision. The "soft margin" constant determines the compromise 
between the hyperplane flatness and the prediction errors. Kernel functions are used in the ε-SVR 
algorithm to handle nonlinear data. They transform the original data to high-dimensional kernel 
space where a linear hyperplane function can be found. Several hyperparameters must be specified 
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before model training, including the kernel function type and its parameters, the "soft margin" 
constant, and the tolerance margin ε. The advantages of SVR compared with other ML regression 
algorithms consist of the high efficiency of handling high-dimensional data with balancing the 
model complexity and prediction error, insensibility to outliers, ability to handle nonlinear data, 
good generalization ability, and no need for large amounts of data.  
 
The SVR algorithm was implemented in a Python-based open-source ML library scikit-learn 
(Pedregosa et al. 2011). Eight separate models for predicting kl,stiff, kl,unstiff; kd,flange, Mcrl,stiff, 
Mcrl,unstiff, Mcrd,web, Mcrd,flange, and Mu were created and optimized. The input variables of the models 
included L, h, t, αw, r, btfo, bbfo, blo, αst, hsto, Nhats, P, Fy (in the Mu model only), and the deck bending 
orientation (in the kl,stiff,  kd,flange, Mcrl,stiff, Mcrd,flange, and Mu models only; 1 and 2 were used for the 
normal and inverted bending orientations, respectively). An extensive hyperparameter search was 
performed using an open-source Python-based library Optunity (Claesen et al. 2014) with particle 
swarm optimization (Clerc and Kennedy 2002). 
 
The SVR models were validated and tested using the ten-fold cross-validation method, where the 
dataset is randomly split into training and test data in a specified proportion. In this study, 80% of 
the data were assigned to the training/validation set and 20% to the test set. The training data is 
divided into ten groups, nine of which are used for model training, and the remaining one is used 
for model validation. The training/validation process is repeated ten times, with each group serving 
as the validation set. The final evaluation of the model performance is done on the test data, which 
the model did not see during training.  
 
Each input parameter value in the training set was standardized using Eq. (1) to make scales of the 
parameters uniform, which helps the algorithm train more efficiently.  𝑥 = 𝑥 − 𝜇 𝜎⁄ 1  
where x' is the standardized value of the input variable, x is the original (non-standardized) value 
of the variable, µ and σ are the mean and standard deviation of the variable's original values. The 
test set input values were also standardized using the µ and σ values obtained for the training set. 
 
The model performances were assessed with the following performance metrics commonly used 
in ML (Naser and Alavi 2020): root-mean-square-error (RMSE), mean absolute error (MAE), 
mean percentage error (MAPE), determination coefficient (R2), the minimum, maximum, mean, 
and coefficient of variation values of the FEA-to-SVR ratios. 𝑅𝑀𝑆𝐸 = ∑ 𝑦 − 𝑥 2   𝑀𝐴𝐸 = ∑ |𝑦 − 𝑥| 3   𝑀𝐴𝑃𝐸 = ∑ 4   𝑅 = 1 − ∑∑ 5   
where n is the number of samples, y is the target value from FEA, and x is the target value predicted 
by SVR. 
 
The determined optimal hyperparameters for the SVR models are given in Table 2. The radial 
basis function (RBF) was specified for all models. 
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Table 2: Optimal Hyperparameters of SVR Models 

Hyperparameter Predicted Property
kl,stiff kl,unstiff kd,flange Mcrl,stiff Mcrl,unstiff Mcrd,web Mcrd,flange Mu

C 5931 5309 1582 9977 9380 5311 1572 3880
γ 0.018 0.124 0.251 0.099 0.139 0.249 0.043 0.068
ε 0.032 0.010 0.067 0.035 0.049 0.048 0.009 0.053

 
5. Performance of SVR Models 
The prediction performance of the developed SVR models on training and test sets is presented in 
Fig. 5. Performance metrics for buckling coefficients and bending moments are shown in Tables 
3 and 4, respectively. 
 

 
Figure 5: Performance of SVR Models 
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Table 3: Performance Metrics of SVR for Predicting Buckling Coefficients for Training and Test Sets 

Metric kl,stiff kl,unstiff kd,flange 
Train Test Train Test Train Test

RMSE 0.027 0.027 0.009 0.010 0.052 0.062
MAE 0.022 0.022 0.009 0.009 0.047 0.055

MAPE (%) 0.556 0.555 0.835 0.828 0.269 0.290
 

Table 4: Performance Metrics of SVR for Predicting Moments for Training and Test Sets 
Metric Mcrl,stiff Mcrl,unstiff Mcrd,web Mcrd,flange Mu

Train Test Train Test Train Test Train Test Train Test
RMSE (kNm) 0.142 0.166 0.026 0.026 0.186 0.223 0.173 0.158 0.165 0.164
MAE (kNm) 0.032 0.046 0.008 0.010 0.034 0.055 0.070 0.076 0.045 0.067
MAPE (%) 0.149 0.215 0.331 0.377 0.308 0.494 0.375 0.479 0.904 1.357

 
It can be concluded from Fig. 5 and Tables 3 and 4 that the developed models demonstrate an 
excellent accuracy in predicting all considered deck properties and good generalization ability. 
The differences in the performance metrics for the training and test sets are relatively small, 
indicating that the models are not prone to overfitting. 
 
6. Feature Importance and Feature Effects 
ML models are often criticized and not readily adopted by structural engineers due to their black-
box nature, which allows for accurate predictions but cannot be easily understood and explained 
by humans. Several methods are available and commonly used to explain and interpret ML models 
(Naser 2021). In the present study, the SHapley Additive exPlanations (SHAP) technique 
(Lundberg and Lee 2017) was used to evaluate the relative feature importance and feature effects 
on the deck properties predicted by the developed models. The SHAP method uses the Shapley 
values from the cooperative game theory. Feature impact on the model predictions is estimated by 
comparing predictions for models with and without each feature. 
 
The SHAP method reveals feature importance and feature effects for the evaluated ML model. If 
the model is accurate, the SHAP method results also reflect the actual physical relationships 
between the features and targets. It was shown in Section 5 that the developed models produce 
very accurate predictions. Therefore, it can be considered that SHAP relative feature importance 
and feature effects presented in this section represent the mechanics-based relationships.      
 
Fig. 6 shows SHAP summary plots, which combine feature importance and feature effects for each 
developed SVR model. Each point on the summary plot represents a dataset sample. The point 
color corresponds to the feature value ranging from blue for low values to red for high values. 
Points with the same Shapley values are scattered in the vertical direction. The feature order 
follows their SHAP importance. Features with higher SHAP values have more significant effects 
on model predictions.  
 
It should be noted that some dataset features correlated with each other. For example, deeper deck 
profiles generally had longer spans, wider flanges and pitches, and fewer hats. Heavier profiles 
had greater bend radii at the steel centerline. Decks with fewer hats had wider pitches. For most 
profiles, the flat width of the unstiffened deck flanges, wl, was taken as one-half of the bottom 
flange flat width, wbf. Therefore, the presented importance and effects of some features on the 
studied deck properties are driven by other features correlated to the considered ones.     



 11

 

 

 

 
Figure 6: SHAP Summary Plots

 
The deck bending orientation, αst, and hsto had the most significant effects on kl,stiff. The positive 
deck bending (BO=1) produced higher kl,stiff values than negative deck bending (BO=2). These 
results were driven by the non-symmetric deck sections (1.5B and 3N), for which kl,stiff reduces 
when the relative neutral axis location increases (Degtyarev 2020a). Greater values of the 
longitudinal stiffener angle, αst, resulted in higher kl,stiff values, and vice versa. The longitudinal 
stiffener height, hsto, generally had a similar effect on kl,stiff, but the results were somewhat mixed: 
for some profiles, an increase in hsto resulted in an increase in kl,stiff, while the opposite was true for 
other decks. An increase in deck height, h, resulted in a kl,stiff reduction. This result can be explained 
as follows. Deck webs in compression are more prone to buckling along with the compression 
flanges for deeper profiles. The web-flange buckling interaction reduces kl,stiff. The kl,stiff values 
reduced when t increased and increased when the top flange width, btfo, increased. The effects of 
h, t, and btfo on kl,stiff were considerably smaller than the effects of BO, αst, and hsto. The remaining 
features had even more minor effects on kl,stiff.  
 

kl,stiff kl,unstiff kd,flange

Mcrl,stiff Mcrl,unstiff Mcrd,web 

Mcrd,flange Mu 
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The kl,unstiff values were most affected by the deck span, L, and steel thickness, t. Higher values of 
L and t produced smaller kl,unstiff values. The effect of L on kl,unstiff can be explained by the aspect 
ratio reduction when the deck span is shortened and the span length effect on the number of half-
waves. However, the latter requires further investigation. bbfo and blo demonstrated similar effects 
on kl,unstiff, because the flat width of the unstiffened flange was taken as one-half of the bottom 
flange flat width for most profiles. The kl,unstiff values increased when bbfo and blo increased. Deck 
profiles with larger pitches, P, produced higher kl,unstiff values, while the effect of deck height, h, 
on kl,unstiff was mixed. For most profiles, an increase in h increased kl,unstiff, but h affected kl,unstiff 
oppositely for some decks. The remaining features had minor effects on kl,unstiff. 
 
As expected, the longitudinal stiffener height, hsto, had the most significant influence on kd,flange. 
Deeper stiffeners increase the flexural stiffness of flanges, which is reflected in higher kd,flange 
values. The steel thickness, t, and bend radius, r, showed similar but considerably less significant 
effects on kd,flange. Deck profiles with larger t and r values produced higher kd,flange values. The 
remaining features affected kd,flange insignificantly. 
 
Mcrl,stiff was most significantly affected by the steel thickness, t, an increase of which resulted in an 
Mcrl,stiff increase. The longitudinal stiffener height, hsto, bending orientation, and longitudinal 
stiffener angle, αst, followed t in their impacts on Mcrl,stiff, which increased when hsto and αst 
increased and decreased when the bending orientation changed from normal to inverted. The 
remaining features had less significant effects on Mcrl,stiff, which increased in most cases when h, 
r, Nhats, and L increased and decreased when bbfo, btfo, blo, and P increased.  
 
The effect of the steel thickness, t, on Mcrl,unstiff, was considerably more significant than the effects 
of other features. Mcrl,unstiff increased when t increased. The deck span length, L, was the next 
feature most significantly affecting Mcrl,unstiff, which decreased when L increased. The remaining 
features had comparable and less significant effects on Mcrl,unstiff. Interestingly, an increase in blo 
resulted in Mcrl,unstiff reduction, whereas deeper deck profiles produced higher Mcrl,unstiff values. 
 
Mcrd,web was most significantly affected by t, L, and h. Mcrd,web increased when t and h increased 
and reduced when L increased. The remaining features had less significant effects on Mcrd,web. It 
can be observed from Fig. 6 in particular that profiles with wider unstiffened flanges produced 
higher Mcrd,web values. 
 
The longitudinal stiffener height, hsto, and steel thickness, t, had the most significant effects on 
Mcrd,flange, which increased when hsto and t increased. Fig. 6 also shows the high importance of r 
for predicting Mcrd,flange, but this result was caused by the correlation between t and r discussed 
above. The remaining features affected Mcrd,flange less significantly. 
 
Finally, Mu was most significantly affected by the following features in the descending order: t, h, 
Fy, and hsto, which increase resulted in a Mu increase, as expected. The bending orientation of non-
symmetric deck sections also affected the ultimate moment, which was greater for the normal 
bending than for the inverted bending. Similar results were obtained previously (Degtyarev 
2020a). The remaining features affected Mu less significantly.  
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Fig. 6 shows that some features had relatively small effects on the studied deck properties. It might 
be possible to exclude those features from the models without a considerable reduction in the 
predicting accuracy. However, that was done in this work and will be considered in future studies. 
 
The presented information about the feature importance and feature effects generally aligns with 
the mechanics-based knowledge, which confirms the abilities of the developed models to capture 
and reveal the underlying physics from the data used for the model development. At the same time, 
the new information on the effects of h and t on kl,stiff, and L and t on kl,unstiff was obtained. 
 
7. Comparisons  
Fig. 7 shows comparisons of the deck properties predicted by the developed SVR models and 
existing EWM and DSM design provisions (AISI S100-16) with FEA results for the entire dataset.  

 
Figure 7: Comparisons of SVR, EWM, and DSM Predictions 
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Prediction performance metrics are given in Fig. 7 and Tables 5 and 6. The elastic buckling 
properties (kl,stiff, kl,unstiff, kd,flange, Mcrl,stiff, Mcrl,unstiff, and Mcrd,flange) were compared with the EWM 
only, because in the DSM, they are determined from elastic buckling analyses similar to the ones 
performed in the present work. Thus, the deck elastic buckling properties according to the DSM 
are identical to those from FEA obtained in this study. Comparisons for kd,web and Mcrd,web are not 
presented because the EWM cannot predict them. 

 
Table 5: Performance Metrics of SVR and EWM for Predicting Buckling Coefficients 

Metric kl,stiff kl,unstiff kd,flange 
SVR EWM SVR EWM SVR EWM

RMSE 0.027 0.409 0.010 1.743 0.054 9.216
MAE 0.022 0.308 0.009 1.044 0.048 6.507

MAPE (%) 0.556 7.488 0.833 56.955 0.273 18.559
 

Table 6: Performance Metrics of SVR, EWM, and DSM for Predicting Moments 
Metric Mcrl,stiff Mcrl,unstiff Mcrd,flange Mu 

SVR EWM SVR EWM SVR EWM SVR EWM DSM
RMSE (kNm) 0.147 2.170 0.026 3.529 0.170 5.064 0.165 0.969 1.212
MAE (kNm) 0.034 1.205 0.009 2.950 0.071 3.303 0.050 0.760 0.898
MAPE (%) 0.162 7.488 0.341 56.96 0.396 18.559 0.995 14.380 15.688

 
The presented information demonstrates the superior performance of the developed SVR models 
for predicting the steel deck buckling coefficients, buckling moments, and ultimate moment 
compared with the existing design methods. 
 
8. Web Application 
A web application to predict deck properties in bending by the developed SVR models was created 
in Streamlit (https://streamlit.io). Fig. 8 shows the graphical user interface of the web application.  
 

 
Figure 8: Graphical User Interface of the Developed Web Application 
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The application predicts the kl,stiff, kl,unstiff, kd,flange, Mcrl,stiff, Mcrl,unstiff, Mcrd,flange, and Mu values based 
on the following parameters specified by the user: deck type, deck gauge, yield strength, deck 
span, and bending orientation. The application’s source code is available in Degtyarev (2021d). It 
allows for running the application on a local machine. The application has also been deployed to 
the cloud. It can be opened and run in any browser on any device, including mobile, at https://steel-
deck-bending.herokuapp.com/.  
 
9. Conclusions and Future Work 
The paper presented Support Vector Machine regression (SVR) models for predicting the 
following properties of steel deck profiles commonly used in North America: plate buckling 
coefficients of stiffened flanges, plate buckling coefficients of unstiffened flanges, plate buckling 
coefficient for distortional buckling of deck flanges with a longitudinal stiffener, local elastic 
buckling moment of stiffened flanges, local elastic buckling moment of unstiffened flanges, 
distortional elastic buckling moment of a web-edge flange junction, distortional elastic buckling 
moment of a flange-stiffener junction, and ultimate moment. The models were trained, validated, 
and tested using a large finite element analysis results dataset. The developed models demonstrated 
a good generalization ability and excellent prediction accuracy, which exceeded the accuracy of 
the existing design methods. 
 
The SVR models were interpreted by evaluating feature importance and feature effects on the 
studied deck properties with the SHapley Additive exPlanations (SHAP) method. The obtained 
feature importance and feature effects aligned well with the mechanics-based knowledge, 
confirming the abilities of the developed models to capture and reveal the underlying physics from 
the data used for the model development.  
 
For non-symmetric deck cross-sections, the effects of the flange width ratio on the plate buckling 
coefficients of stiffened flanges, the local elastic buckling moment of stiffened flanges, and the 
ultimate moment presented previously were confirmed. The new information on the effects of deck 
height and steel thickness on the plate buckling coefficients of stiffened flanges and span length 
and steel thickness on the plate buckling coefficients of unstiffened flanges was obtained. 
 
A web application for predicting the studied deck properties in bending by the developed SVR 
models was created and deployed to the cloud at https://steel-deck-bending.herokuapp.com/. It can 
be opened and run in any browser on any device, including mobile. The application’s source code 
is available on GitHub, which allows for running the application locally.  
 
The presented study demonstrates a high potential of machine learning methods for predicting 
buckling and ultimate loads of cold-formed steel decks. Considering the magnitude of different 
deck profiles available worldwide, future work should concentrate on expanding the database to 
decks of different shapes and dimensions. Machine learning models based on other commonly 
used regression algorithms should also be studied to determine the algorithm with the highest 
accuracy and the best generalization.    
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