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Abstract 

 

The objective of this paper is to advance a solution scheme that produces a family of optimized 

thin-walled cold-formed steel lipped channel sections for compression and/or flexural 

applications. Similar research was completed in the past to optimize cold-formed steel sections 

using only strength constraints for a broad set of axial (P) and bending (M) load demands. In this 

new study, the algorithms are extended to include stiffness constraints to address both 

serviceability and strength. The stiffness constraint is driven by a novel method for estimating 

effective moment of inertia (Ieff) due to cross-section instabilities. A two-level optimization 

framework is utilized: the first level focuses on member optimization of the P-M demand space as 

derived from current commercially available lipped channel sections in the United States; while 

the second level focuses on the selection of a new family of optimized lipped channel sections that 

have the same efficiency in covering the design space but utilize a minimal family size. The results 

of the study show that an optimized family of section can be significantly smaller than the 186 

currently commercially available sections, but can still achieve the same and/or improved 

performance in terms of both strength and stiffness. The developed family of sections demonstrates 

that optimization techniques have a great potential for improvement of the cold-formed steel 

production industry even on currently available cross-section shapes such as lipped channels. 

 

1. Introduction 

 

Cold-formed steel (CFS) members are commonly used in the construction of low- and mid-rise 

buildings, including as primary load-bearing members all over the world. CFS members have 

many advantages, including a high strength-to-weight ratio, a high recycled content, ease of 

fabrication, and a low manufacturing cost. CFS steel members are produced by bending steel 

sheets into desired shapes at room temperature, typically using a roll former or a press brake. Since 

sheet steel is very thin, the energy required to form the sections is small, and the possibility for 
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manufacturing various shapes is broad. Commonly used shapes for different applications are 

summarized in (Yu et al. 2019). Manufacturing associations in the United States supply catalogs 

of standard commercial shapes for CFS framing, such as that provided by the Steel Framing 

Industry Association (SFIA 2012). 

 

CFS steel holds a potential advantage in increasing material efficiency through cross-sectional 

shape selection due to its ease of manufacture. While sections in current production and use may 

hold certain advantages, they might not be the most efficient in terms of material use. As a result, 

a research effort has been devoted in recent years to seeking new and more efficient CFS sections 

using various optimization algorithms. Initial work on optimization of CFS section typology 

(cross-sectional shape) utilized the Effective Width Method for strength determination based on 

the guidelines provided by AISI (2012), BS5950 (1998), and Eurocode (2001). However, the 

optimization based on the Effective Width Method provided only a limited degree of generality 

and for the best accuracy, the typology of cross-section must be pre-determined. With the adoption 

of the Direct Strength Method (DSM) (Schafer 2008) in the North American Specification for 

Cold-Formed Steel Structural Members: AISI-S100 (2012), which embed a numerical elastic 

buckling prediction capable of evaluating the strength of arbitrary sections, the possibilities for 

CFS optimization have been greatly expanded. The optimization results have shown that 

significant improvements in the strength of conventionally provided structural (intended for load-

bearing application) CFS sections are possible through the integration of DSM into the 

optimization scheme. Several optimization studies in recent years embedded the strength 

prediction of the member using DSM (Gilbert et al. 2012a; b; Leng et al. 2011, 2012, 2013, 2014; 

Moharrami et al. 2014; Parastesh et al. 2021). 

 

On the other hand, the CFS manufacturers; however, do not produce individual sections for single 

applied loading scenarios such as isolated bending or isolated compression. Instead, the 

manufacturers produce families of shapes that engineers can use to satisfy a variety of design 

demands. Therefore, from the manufactures perspective, the cognate problem of optimization of 

CFS sections is to develop a family of CFS sections that are more economic for them to produce. 

In work produced by Li et al. (2016)  a family of optimized CFS shapes under combined loading 

actions were sought, which required far less number of sections than the currently available 

sections in the market, and their efficiency was evaluated. However, the study was based on purely 

the strength constraint. For flexural members, the stiffness degradation due to cross-sectional 

instabilities, i.e., local and distortional buckling, can be an issue for design. The stiffness 

requirement might not be suitable compared to available sections. 

 

The main objective of this paper is to develop a family of CFS sections with the smallest number 

of distinct shapes that can provide a solution over a wide range of axial and bending loading action 

using equal or less material than the most optimal members from currently available industry 

standard sections. The constraints of the adopted optimization scheme include strength for a broad 

range of axial and bending load actions, and novel to this work stiffness constraints for 

serviceability caused by cross-sectional instabilities. The paper begins by examining the 

performance of an existing family of sections provided by SFIA, which includes 186 CFS 

structural lipped channel sections. The sections are examined for their capacity under axial and 

major-axis bending load actions to establish a practical range of demands. Additionally, the least-

weight SFIA sections for any axial and bending demands are established for baseline comparisons. 



Then, new optimal sections for different strength demands are established with the added stiffness 

constraint. Selection of these optimal sections is performed to form a family of optimal sections 

for manufacture recommendation. 

 

2. Current P-M space of US CFS sections and design methodology 

 

2.1. SFIA structural sections 

 

In the United States, the lipped channel section (Fig. 1) serves as the dominant type of CFS 

structural member and is used in both wall and floor framings as studs and joists. Manufacturing 

associations in the United States such as the SFIA supply a wide selection of structural lipped 

channel sections with depth varying from 2.5 in. (63.5 mm) to 16.0 in. (406.4 mm) and thickness 

varying from 33 mils (0.84 mm) to 118 mils (3.00 mm) as summarized in Table 1. In total, SFIA 

supplies a selection of 186 different CFS lipped channel sections with 11 different depths and 6 

different thicknesses for structural use. 

 

 
Figure 1: CFS lipped channel section with dimensional nomenclature. Corner radius r = 2t. 

 
Table 1: Dimensional and material property limits of SFIA CFS lipped channel sectionsa. 

 H B D t 

 (mm) (in.) (mm) (in.) (mm) (in.) (mm) (mils) 

Min. 63.5 2.5 34.93 1.375 9.53 0.375 0.84 33 

Max. 406.4 16.0 88.90 3.500 25.40 1.000 3.00 118 
a Nominal yield strength, Fy, is either 33 ksi (227 MPa) or 50 ksi (345 MPa) depending on the thickness. 

 

2.2. Strength prediction methodology 

 

The loading actions considered in this study include axial loading and major-axis bending. To 

determine the axial and major-axis bending strength capacity of the SFIA lipped channel section 

DSM in the AISI-S100 specification is employed. DSM requires that the elastic buckling loads in 

compression for local (Pcrℓ), distortional (Pcrd), and global (Pcre), and, similarly, for major-axis 

bending (Mcrℓ, Mcrd, and Mcre) be calculated for every cross-section. DSM provides simplified 

expressions that account for buckling, post-buckling, and yielding inherit in thin-walled cross-



section performance. The DSM strength expressions combine buckling loads or moments with 

appropriate yield load (Py), or moment (My) to produce axial (Pn) or bending (Mn) capacity. 

The following assumptions were employed for the strength capacity calculations of the SFIA 

lipped channel sections: the material of steel is assumed to be elastic-plastic, isotropic, with 

Young’s modulus of E = 29,500 ksi (203,400 MPa), Poisson’s ratio of v = 0.3, and yield stress of 

Fy = 50 ksi (345 MPa); consistent with final applications, where members are sheathed and/or 

braced, all section are assumed to be globally braced, i.e. global buckling doesn’t control the 

strength capacity (Pcre → , Mcre → ). 

 

Local and distortional buckling loads or moments are determined using the semi-analytical finite 

strip method under simply supported end boundary conditions as implemented in CUFSM 

software, the elastic buckling strength of which will be the direct inputs of DSM to evaluate the 

strength capacity of the member (Li and Schafer 2010a). The finite strip models of cross-sections 

do not include corners, which means that a straight-line model is assumed. For cross-sections 

without a distinct elastic buckling minima in the finite strip signature curve, the two-step procedure 

for identifying unique minimum is employed (Li and Schafer 2010b). The inelastic bending 

provisions of AISI-S100 are ignored, hence the maximum moment is the moment at the first yield 

My. 

 

2.4. Nominal P-M space 

 

Based on the results obtained by Li et al. (2016), the maximum nominal axial (Pn) and bending 

(Mn) strengths of all SFIA lipped-channel stud sections are 78.3 kips (348.3 kN) and 541.7 kip-in. 

(61.2 kN-m), respectively. To study optimal SFIA cross-sections within this strength range a point 

representation of the P-M space (Fig. 2) was generated and chosen over traditional beam-column 

interaction diagrams. In this point representation isolated Pn and Mn strength capacities are used 

as unique coordinates for each individual SFIA cross-section. As a result, Fig. 3 provides a means 

to view how all of the SFIA sections cover the P-M space, as well as provide an easy way of 

identifying beam-efficient (closer to y-axis) and column-efficient (closer to x-axis) members. 

 

 
Figure 2: Relationship between traditional beam-column interaction diagram and a single point representation of P-

M capacity. 
 



 
Figure 3: Collapsed beam-column interaction representation in the P-M space providing a point estimate for the 

strength capacity of all globally braced SFIA lipped channel sections. 

 

2.5. Optimal SFIA lipped channel sections 

 

For baseline comparisons, the optimal (least-weight/minimum cross-sectional area) SFIA sections 

are required to be identified for any combinations of axial and bending demands. To explore the 

optimal solutions the P-M space is discretized into a 5516 demand grid spaced at 5 kip (22.24 

kN) for axial demand and 10 kip-in. (1.13 kN-m) for bending demand as shown in Fig. 4. The 

same approach of P-M space discretization was previously utilized in the research of Li et al. 

(2016). Out of the 186 available SFIA sections 72 are found to be the optimal sections and meet 

all unique demand grids (Pt, Mt) in the given P-M space as shown in Fig. 4 (also overlayed in Fig. 

3).  In Fig. 5, each optimal solution for every intersection of the discretized P-M space is indicated 

with a unique marker and color and designated using the section nomenclature of SFIA. These 

optimal solutions from SFIA sections are used to establish a baseline against which the 

optimization results are compared. 

 



 
Figure 4: Discretization and regularization of P-M space. 

 

 
Figure 5: Optimal SFIA sections of the discretized P-M space. 



3. Optimization based on strength constraint only 

 

Family optimization of lipped channel sections with the strength constraint was performed by Li 

et al. (2016) using a two-level optimization approach. No serviceability check for flexural 

members was implemented into the optimization scheme. The results are revisted here as they 

provide key output for comparison with the improved optimization scheme. Li et al.’s (2016) first 

level focused on individual member optimization for each demand grid point shown in Fig. 5, and 

the second level focused on the selection of a reduced family of those optimal lipped channel 

sections in level one that have the same and/or improved efficiency in covering the overall 

demand-M space with the minimum family size. 

 

3.1. First level: Individual member optimization 

 

The first level optimization used by Li et al. (2016) utilized Particle Swarm Optimization (PSO), 

a population-based stochastic search method for continuous nonlinear functions. The PSO was 

first introduced by Kennedy and Eberhart (1995) and was inspired through simulation of simple 

social behavior models such as bird flocking or fish schooling (Kennedy 2010). The PSO is 

performed in accordance with the provided objective function and incorporated constraints. The 

objective function of the first level optimization is sought to seek a lipped channel section with the 

least cross-sectional area A that can satisfy given demands (Pt, Mt) and is also subject to 

dimensional constraints dictated by manufacturability and end-use applications. The objective 

function and constraints are mathematically formulated as follows: 

 

min A = f(H, B, D, t) (1) 

subject to: 

Strength constraints: 

Pn  Pt 

Mn  Mt 

Dimensional constraints: 

Hmin  H  Hmax 

Bmin  B  Bmax 

Dmin  D  (H - Dgap)/2 

tmin  t  tmax 

 

From Li et al.’s (2016) first level optimization, it was found that all PSO-based optimal sections 

were lighter (smaller cross-sectional area) than the least-weight SFIA sections. A contour plot of 

the ratio of the least-weight SFIA sections’ areas (ASFIA least-weight) to PSO-based optimal sections’ 

areas (APSO opt.) for the derived P-M space is shown in Fig. 6. The minimum, maximum, and mean 

area ratios were found to be 1.04, 2.03, and 1.14, respectively. Thus, on average, PSO-based 

optimal lipped channel sections were 14% more efficient in terms of material use when compared 

against the least-weight SFIA sections. 

 



 
Figure 6: Comparison of cross-sectional areas of PSO-based optimal lipped channel sections with least-weight 

SFIA sections across P-M space. PSO-based optimal sections were obtained with only strength constraints 

incorporated into the PSO algorithm. 

 

3.2. Second level: Family optimization 

 

From Li et al.'s (2016) first level optimization, 880 PSO-based optimal lipped channel sections 

were identified for each unique strength demand pair (Pt, Mt) of the discretized P-M space (for 

each intersection of 5516 search grid). Manufacturing such a large number of individual shapes 

is unpractical and the second level optimization seeks to find a family of optimized lipped channel 

sections of a minimal size that has equal or better strength capacity and material efficiency than 

the current family of SFIA sections for the given design P-M space. A baseline efficiency using 

the optimal SFIA sections was established based on the overall fitness defined in Eq. (2) or Eq. 

(3), which represent uniform and weighted fitness, respectively: 

 

𝐹𝑆𝐹𝐼𝐴  =  ∑
1

𝑚 × 𝑝

𝐴𝑆𝐹𝐼𝐴 𝑙𝑒𝑎𝑠𝑡−𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]

𝐴𝑃𝑆𝑂 𝑜𝑝𝑡.[𝑖]

𝑚×𝑝−1

𝑖
 (2) 

 

𝐹𝑆𝐹𝐼𝐴  =  ∑ 𝑤𝑖

𝐴𝑆𝐹𝐼𝐴 𝑙𝑒𝑎𝑠𝑡−𝑤𝑒𝑖𝑔ℎ𝑡[𝑖]

𝐴𝑃𝑆𝑂 𝑜𝑝𝑡.[𝑖]

𝑚×𝑝−1

𝑖
 (3) 

 

Where, ASFIA least-weight[i] is the optimal SFIA section at grid point i and APSO opt. is the first level 

PSO-based optimal lipped channel section at the same grid point i, m is the number of discrete 

grid points in bending capacity (55 in this case) and p is the number of grid points in axial capacity 

(16 in this case), and wi is the weighting factor at grid point i. The weighting factor wi in Eq. (3) is 



proposed since CFS members are typically intended to be used only for pure axial or bending 

loading conditions. Thus, heavier weight coefficients of 0.25/16 and 0.25/55 were assigned to pure 

axial (Pt, 0) and pure bending (0, Mt) demand cases, respectively, and 0.5/809 for the remaining 

beam-column (Pt > 0, Mt > 0) demand cases. 

 

Li et al.'s (2016) second level optimization sought to minimize the fitness (F) for a given family 

size (n) of optimal lipped channel sections and try to find the smallest family size that provides a 

F smaller than or equal to the baseline FSFIA, specifically: 

 

𝑚𝑖𝑛 𝐹(𝑥𝑛)  =  ∑ 𝑤𝑖

𝐴𝐿𝐶 𝑓𝑎𝑚𝑖𝑙𝑦 𝑜𝑝𝑡.

𝐴𝑃𝑆𝑂 𝑜𝑝𝑡.

𝑚×𝑝−1

𝑖
 (4) 

 

where, xn is the design variable containing the dimensions for the optimal lipped channel sections 

and ALC family opt.[i] is the least-weight shape at grid point i available in the new family of optimal 

lipped channel shapes among the family n. The problem of finding such a family of PSO-based 

optimal sections with the minimum family size is solved using a Genetic Algorithm (GA). 

 

The results of the second-level optimization have shown that a family of only 12 optimized 

sections can achieve the same and/or better performance as the 186 SFIA sections to cover the 

same design P-M space. 

 

4. Optimization with both strength and stiffness constraints 

 

For the practical design of flexural members, the serviceability of the beam needs to be considered. 

For cold-formed steel members, due to the cross-sectional instabilities, degradation of the stiffness 

could happen to the flexural member. This ought to be taken into account for member optimization. 

In this study, the same optimization framework used by Li et al. (2016), a two-level optimization 

approach, is adopted with the incorporation of a stiffness constraint for member optimization in 

the first level. 

 

4.1. Stiffness prediction methodology: 

 

Since 2012 AISI S100 (2020) provides both an effective width and an approximate direct strength 

method for predicting the effective moment of inertia for cold-formed steel sections. However, 

Ayhan and Schafer (2015) showed that both available methods suffer from inaccuracy and 

proposed a new set of expressions. Ayhan and Schafer (2017) then extended this formulation to 

the complete moment-rotation backbone and these expressions were adopted in ASCE 41 (2017). 

During AISI committee work in 2020 Schafer noted that the Ayhan and Schafer (2015) 

formulation captured stiffness reduction due to yielding (material nonlinearity) with high accuracy, 

but less so for sections with extreme cross-section slenderness (geometric nonlinearity). A revised 

method was developed, that is summarized here. The stiffness reduction is dependent on whether 

local or distortional buckling controls the strength:  

 

𝐼𝑒𝑓𝑓 = {
𝜏ℓ𝐼𝑔

𝜏𝑑𝐼𝑔

 if local buckling controls

 if distortional buckling controls
} (5) 

 



The basic method follows Ayhan and Schafer (2015), and no reduction in stiffness occurs up to 

the moment 𝑀𝑒 and then the tangent stiffness is reduced from 𝑀𝑒  to the nominal moment, 𝑀𝑛. 

Since secant stiffness is utilized in design the reduced stiffness has a linear transition expression. 

The maximum reduction, 𝜏𝑚𝑖𝑛 , which occurs at 𝑀𝑛 , utilizes Ayhan and Schafer’s (2015) 

expressions for material nonlinearity, now expressed as 𝜏𝑚, and makes this factor multiplicative 

with a new geometric reduction factor, 𝜏𝑔. The format is the same for local (subscript ℓ) and 

distortional (subcscript 𝑑), but the specific expressions change. For local buckling: 

 

𝜏ℓ = {

1 for 𝑀 ≤  𝑀𝑒ℓ

1 − (1 − 𝜏ℓ𝑚𝑖𝑛) 
𝑀 − 𝑀𝑒ℓ

𝑀𝑛ℓ𝑜  −  𝑀𝑒ℓ
for 𝑀𝑒ℓ  <  𝑀 ≤  𝑀𝑛ℓ𝑜

} (6) 

 

where 𝑀 is the moment at which the stiffness is to be determined, 𝑀𝑛ℓ𝑜 is the maximum moment 

that a fully braced member can sustain in local buckling, and 𝑀𝑒ℓ is: 

 

𝑀𝑒ℓ = {
𝑀𝑦 for 𝜆ℓ  <  0.650

(0.650/𝜆ℓ)2𝑀𝑦 for 𝜆ℓ  ≥  0.650
} (7) 

 

where 𝑀𝑦  is the yield moment, 𝜆ℓ  is the local cross-section slenderness, √𝑀𝑦/𝑀𝑐𝑟ℓ , and the 

minimum reduction factor 𝜏ℓ𝑚𝑖𝑛 is: 

 
𝜏ℓ𝑚𝑖𝑛  =  𝜏ℓ𝑔𝜏ℓ𝑚 (8) 

 

𝜏ℓ𝑔  =  
1

0.08𝜆ℓ
2 + 0.95

(
𝑀𝑛ℓ𝑜

𝑀𝑦
) ≤ 1 (9) 

 

𝜏ℓ𝑚  =  𝜆ℓ (
𝑀𝑛ℓ𝑜

𝑀𝑦
) ≤ 1 (10) 

 

Similarly, for distortional buckling: 

 

𝜏𝑑 = {

1 for 𝑀 ≤  𝑀𝑒𝑑

1 − (1 − 𝜏𝑑𝑚𝑖𝑛) 
𝑀 − 𝑀𝑒𝑑

𝑀𝑛𝑑  − 𝑀𝑒𝑑
for 𝑀𝑒𝑑  <  𝑀 ≤  𝑀𝑛𝑑

} (11) 

 

𝑀𝑒𝑑 = {
𝑀𝑦 for 𝜆𝑑  <  0.60

(0.60/𝜆𝑑)2𝑀𝑦 for 𝜆𝑑  ≥  0.60
} (12) 

 
𝜏𝑑𝑚𝑖𝑛  =  𝜏𝑑𝑔𝜏𝑑𝑚 (13) 

 

𝜏𝑑𝑔  =  
1

0.12𝜆𝑑
2 + 0.94

(
𝑀𝑛𝑑

𝑀𝑦
) ≤ 1 (14) 

 

𝜏𝑑𝑚  =  𝜆𝑑
1.4 (

𝑀𝑛𝑑

𝑀𝑦
) ≤ 1 (15) 

 



where 𝑀𝑛𝑑 is the distortional buckling strength, 𝜆𝑑 is the distortional cross-section slenderness, 

√𝑀𝑦/𝑀𝑐𝑟𝑑  and all other terms are previously defined. From an optimization standpoint the 

stiffness is a function of 𝑀𝑐𝑟ℓ , 𝑀𝑐𝑟𝑑 , 𝑀𝑦 , and the moment, 𝑀, at which the stiffness is to be 

determined. Similar to the strength optimization, all the inputs may be readily determined by finite 

strip analysis for an arbitrary section. 

 

4.2. First level: Individual member optimization 

 

The first level optimization of member optimization was done by utilizing the same PSO algorithm 

and the same objective function as the previous study – the minimal section area, however, it needs 

to meet both strength and stiffness constraints. The mathematical formulation of the new 

optimization problem can be expressed with the following equation : 

 

min A = f(H, B, D, t)                          (16) 

subject to: 

Strength constraints: 

Pn  Pt 

Mn  Mt 

Stiffness constraint: 

Ieff ≥ Ieff, SFIA 

M = 0.6𝜙Mt  

Dimensional constraints: 

Hmin  H  Hmax 

Bmin  B  Bmax 

Dmin  D  (H - Dgap)/2 

tmin  t  tmax 

 

where, the new stiffness constraint is established by taking the service moment 𝑀 as 60% of the 

required moment in design (M = 0.6𝜙Mt, 𝜙 = 0.90), and the optimized section’s effective stiffness 

under the service moment (Ieff) must not be smaller than the optimal SFIA section’s effective 

stiffness (Ieff, SFIA). 

 

A contour plot that shows the ratio of the least-weight SFIA sections’ areas (ASFIA least-weight) to new 

PSO-based optimal sections’ areas (APSO opt.) with the new stiffness constraint added is provided 

in Fig. 7. The minimum, maximum, and mean area ratio values are found to be 1.00, 1.23, and 

1.06, respectively. Thus, on average, new PSO-based optimal lipped channel sections obtained 

with both strength and stiffness constraints are 6% more efficient in terms of material use when 

compared against the least-weight SFIA sections of the discretized P-M space. Compared to those 

without the stiffness constraint in Fig. 6, which demonstrates a material efficiency of 14% on 

average, the added stiffness requirement demands more material to fulfill the serviceability 

demand. 

 



 
Figure 7: Comparison of areas of new PSO-based optimal lipped channel sections with least-weight SFIA sections 

across P-M space. PSO-based optimal sections are obtained with both strength and stiffness constraints incorporated 

into PSO algorithm. 

 

Similar contour plots that show the ratio of effective stiffness of the least-weight SFIA sections 

(Ieff, SFIA least-weight) to PSO-based optimal sections (Ieff, PSO opt.) for both (Li et al. 2016) and this study 

are provided in Fig. 8. From Fig. 8b, the minimum, maximum, and mean effective stiffness ratio 

values are found to be 1.00, 1.33, and 1.01, respectively. Thus, on average, the effective stiffnesses 

of new PSO-based optimal lipped channel sections are about the same compared to those of the 

least-weight SFIA sections. The optimization formulation did not target the improvement of 

stiffness but rather use it as a control for serviceability. In other words, effective stiffness is 

maintained, rather than improved. Hence, in most cases, the PSO algorithm optimized sections in 

such a way that effective stiffnesses are equal to effective stiffness values of the least-weight SFIA 

sections. Still, for some regions, due to the strength demands, the algorithm finds optimal sections 

that greatly improve the effective stiffnesses, as high as 33%. Meanwhile, maintaining required 

strength capacity and improving material efficiency might come at a cost of decreased effective 

stiffness as shown Fig. 8a when stiffness is not constrained. Since the optimization scheme used 

by Li et al. (2016) did not account for the serviceability constraint of flexural members, the 

effective stiffness, on average, decreased by 34% to allow the increase in efficiency of material 

use. An example of these changes is provided in Fig. 9. With strength constraints only, the optimal 

section in Fig. 9b is slightly less deep compared to the SFIA section (Fig. 9a) with an improvement 

of material efficiency of 6% but a sacrifice of the effective moment by 17%. While with the added 

stiffness constraint, the algorithm finds a taller section (Fig. 9c) meeting both the strength and 

stiffness at the same time with a slight sacrifice of material efficiency, i.e., only 2% improvement 

compared to the optimal SFIA section. 



 
(a) 

 
(b) 

Figure 8: (a) Comparison of effective stiffness of PSO-based optimal lipped channel sections from (Li et al. 2016) 

(strength constraints only) with least-weight SFIA sections across P-M space. (b) Comparison of effective stiffness 

of new PSO-based optimal lipped channel sections (both strength and stiffness constraints) least-weight SFIA 

sections across P-M space. 



 
Figure 9: Change in section parameters of the least-weight SFIA section with Pn = 55 kips and Mn = 360 kip*in. 

 

4.3. Second level optimization 

 

The family fitness (F) of new PSO-based optimal sections obtained from the first level 

optimization is determined using Eq. (2) and Eq. (3) and compared against the same baseline 

efficiency benchmark of an existing family of sections provided by SFIA (FSFIA) from Li et al. 

(2016) for consistency. The family fitness, F, as a function of family size, n, is shown in Fig. 10. 

The results show that for uniform weighting of the fitness function a family of 8 unique lipped 

channels has an equal or better fitness than the 72 least-weight SFIA shapes across the P-M space. 

If the alternative beam and column weighting is employed on the fitness function then only 8 

unique sections are required to meet the fitness of the SFIA shapes. Both of these results show an 

improvement over the results obtained in Li et al. (2016) where it was found that a family of 12 

elite sections can meet the overall axial and bending performance of currently available SFIA 

lipped channel sections. 

 

The 8 elite sections selected to meet the design demand are listed in Table 2. Note that even though 

the new family of PSO-optimized sections meets the fitness provided by the SFIA sections across 

the entire P-M space, at an arbitrary point, i, (or region) the new family of sections might not 

always provide the optimal material efficiency.  In other words, material efficiency is guaranteed 

over the whole design space, but not necessarily for each individual demand. 

 



 
Figure 10: Fitness of new PSO-based optimal sections as a function of family size. 

 

Table 2: Dimensions of elite design for n = 8 family of sections. 

ID 
H B D t 

(mm) (in.) (mm) (in.) (mma) (in.) (mm) (in.) 

1 102.4 4.03 21.3 0.84 9.5 0.37 1.59 0.0627 

2 261.0 10.27 58.8 2.31 19.2 0.75 1.62 0.0636 

3 183.7 7.23 47.8 1.88 7.8 0.31 3.15 0.1242 

4 207.7 8.18 59.4 2.34 18.6 0.73 3.15 0.1240 

5 207.9 8.19 89.8 3.53 16.8 0.66 3.15 0.1242 

6 268.9 10.59 75.1 2.96 22.1 0.87 3.15 0.1242 

7 433.7 17.07 62.4 2.46 23.1 0.91 3.15 0.1242 

8 399.5 15.73 64.4 2.54 72.8 2.87 3.07 0.1210 

 

5. Discussion 

The optimization results obtained in this study demonstrate that a significant improvement in 

material usage efficiency of currently available CFS lipped channel sections is achievable even 

when serviceability is incorporated into the optimization framework. It was also shown that it is 

possible to obtain even smaller section families (or at least on par) to those obtained by Li et al. 

(2016) which considered only strength requirements. 

 

Even with the stiffness constraint for serviceability of flexural members incorporated into the 

optimization scheme (along with the strength capacity constraint), there is still room to explore the 

possibility of including additional optimization constraints for shear strength and web crippling 

strength (with appropriate combinations) . In addition, the optimization scheme can be modified 

to account for cases when members are globally unbraced over practical spacings for column (stud) 



and beam (joist) applications. Furthermore, the optimization scheme can be extended to optimize 

other common CFS member shapes such as sigma-, hat-sections, etc. 

 

6. Conclusions 

 

The results of this study show that a family of 8 (least-weight) lipped channel sections can meet 

the overall axial and bending demands of the 186 currently available sections provided by SFIA 

while also satisfying stiffness, manufacturability, and end-use functional constraints. The work 

also demonstrates a means to improve CFS shape optimization from single members, with single 

applied actions, to families of members with multiple applied actions - a more consistent approach 

that satisfies pratical requirements for production of CFS members. The optimization scheme 

employed herein uses a two-level approach. In the first level, the least-weight SFIA sections were 

individually optimized across an established P-M space. The optimization employed finite strip 

based elastic buckling solutions as inputs for determining strength as well as a novel method for 

determining stiffness. In the second level a genetic algorithm was employed to estimate the optimal 

fitness for a family of sections of a given population size. A family of sections with the smallest 

population size that meets or improves upon the baseline, set the fitness of the least-weight SFIA 

sections, and is the minimal family size needed for manufacturing. The presented optimization 

framework provides a mechanism to generate families of sections required for manufacturing, and 

it is applicable for future work that takes into account additional limit states and more general 

cross-sections. 
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