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Abstract 
The objective of this paper is to report on a series of numerical analyses performed to study the 
lateral-torsional buckling behavior of point-symmetric, typically Zee-shaped, cold-formed steel 
members. Zees have principal axes which are inclined from the geometric axes as defined by the 
web and flange. Further, loading and bracing is often in the geometric axes. As a result, stability 
and strength, even in the global lateral-torsional buckling mode is an unconventional coupling of 
torsion as well as major- and minor-principal axis bending. The governing design specification for 
these cold-formed steel members in North America, AISI S100, has long applied a conservative 
simplification for elastic lateral-torsional buckling of point-symmetric sections. Recently, the AISI 
subcommittee on Member Design, which the second author chairs, considered proposed changes 
for lateral-torsional buckling of point-symmetric and non-symmetric sections, but limited data was 
available to support these changes. The purpose of this study was to provide additional exploration 
of the proposed design approach using numerical analysis. Geometric and material nonlinear shell 
finite element analysis was conducted on Zees specifically selected to focus on global deformation, 
i.e., sections not prone to local or distortional buckling under the studied conditions. The results 
are compared with existing and proposed provisions for both stability and strength and 
recommendations provided for design. 
 
 
 
 
1. Introduction 
Cold-formed steel (CFS) members are formed by bending sheet steel into useful structural shapes. 
The resulting shapes are typically open in cross-section with limited torsional stiffness. In addition, 
such sections need not be symmetric, therefore flexural and torsional deformations are commonly 
coupled. However, the governing CFS design specification in North America, AISI S100, has long 
taken a simplistic approach to lateral-torsional buckling provisions for non-symmetric members. 
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Non-symmetric CFS members can potentially serve as efficient purlins, girts, joists, rack uprights, 
etc.  Unlike conventional singly-symmetric cold-formed steel members, the support layout and the 
principal axes do not align for such members. For example, the common point-symmetric Zee-
shaped sections that are the focus of the work herein, have principal axes inclined from the web 
and flange as shown in Figure 1. As a result of the location of the principal axis common gravity 
loading (for example in the -Y direction of Figure 1) causes bending about both principal axes – 
which leads to difficulty in determining the critical elastic lateral-torsional buckling stress. In 
addition to the geometric (X-Y) and principal (1-2) axes Figure 1b depicts another set of arbitrary 
axes (a-b) which are an angle θ from the principal major axis, and an angle β from the geometric 
axis. In the work herein, we will consider bending about the arbitrary axis “a” and the resulting 
global elastic buckling and strength.  
 
Analytical formula for the elastic lateral-torsional (global) buckling for bending about any inclined 
axis (“a”) from the major principal axis has recently been developed by Glauz (2017) and serves 
in part as motivation for this study. This paper considers the elastic bucking, inelastic buckling, 
and ultimate strength of typical Zee-shaped cold-formed steel members under the end moments of 
Figure 1. As discussed herein, members and details are selected to focus on global lateral-torsional 
buckling, not local or distortional buckling.  
 

(a) (b) (c)  
Figure 1: Zee section bent about non-principal axis (a) applied as end moments (b) coordinate axes and angles (c) 

decomposition of arbitrary axis bending moment into principal axis bending moments 
 
2. Elastic Buckling about Arbitrary Bending Axis 
Elastic lateral-torsional buckling (LTB) for bending about an axis not aligned with the major 
principal axis is an unusual case, not traditionally included in classical derivations or design 
specifications. This is true, in part, because the notion of “buckling” when the deformation 
resulting from the eigen problem is not orthogonal to the primary deformations from the loading, 
is a somewhat controversial concept. See Trahair (2018) for an explanation that rejects the 
possibility of buckling about the non-principal major axis. However, as Glauz (2017) shows 
analytically, and as is commonly implemented in finite strip and finite element software, the eigen 
problem whereby the magnitude of the linearized approximation of the geometric stiffness (K") 
erodes the elastic stiffness (K#) is still well defined in these cases, i.e.: 
 
 K#ϕ	 = λ()K"ϕ (1) 
 
Thus, a buckling load (λ() times the reference load) and mode (ϕ) may be established, even when 
the problem is not a pure bifurcation problem. For point-symmetric sections Glauz (2017) derives 
this moment to be:   
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 M()# = C,r./P#P1 (2) 

 P# =
2345653
57(9:;:)3

 (3) 

 P1 =
=
)>3
?GJ + 234CD

(9E;E)3
F (4) 

 
Where C,is the moment gradient factor, r.is the polar radius of gyration about the shear center, E 
is the modulus of elasticity, I= and II are the principal moments of inertia, IJ is the moment of 
inertia about the axis of bending, KKLK is the flexural effective length, G is the shear modulus, J is 
the St. Venant torsional stiffness, CM is the warping stiffness, and K1L1 is the torsional effective 
length. For the studied Zee sections in Glauz (2017) bent about the geometric axis, i.e., 
perpendicular to the web, Eq. (2) is compared with plate finite strip solutions from CUFSM and 
CFS and shell finite element solutions from ABAQUS in Table 1. Cross-section properties for use 
in Eq.’s (2)-(4) are derived from sharp corner models in either CUFSM or CFS and are fully 
detailed in Wang et al. (2020). The methods are all in close agreement. This verifies that the elastic 
LTB calculation for bending about a non-principal axis is robust and can be performed by any of 
the selected methods with confidence. 
  

Table 1: Buckling moment under unrestrained bending about geometric axis (X of Fig. 1)  
for sharp corner Zee sections with Fy = 50 ksi and L = 180 in. 

ID1  
Analytical Mcre   FSM_Mcre   ABAQUS 

Mcre CUFSM2 CFS2  CUFSM CFS  

kip-in kip-in   kip-in kip-in   kip-in 
12ZS3.25×105 158.891 158.407   157.627 157.330   157.320 
12ZS2.75×105 112.134 111.807  111.509 111.270  111.336 
12ZS2.25×105 75.119 74.922  74.860 74.749  74.774 
10ZS3.25×105 128.093 127.655  127.429 127.060  127.157 
10ZS2.75×105 90.878 90.575  90.565 90.346  90.407 
10ZS2.25×105 61.340 61.133  61.224 61.080  61.142 
9ZS2.25×105 54.739 54.537  54.669 54.530  54.588 
8ZS3.25×105 99.246 98.850  98.921 98.590  98.685 
8ZS2.75×105 70.927 70.643  70.793 70.565  70.651 
8ZS2.25×105 48.373 48.180  48.337 48.204  48.259 
7ZS2.25×105 42.291 42.105  42.280 42.149  42.202 
6ZS2.25×105 36.553 36.371  36.560 36.426  36.483 
4ZS2.25×70 14.799 14.733  14.800 14.746  14.771 
3.5ZS1.5×70 5.306 5.277   5.317 5.292   5.310 
1. Cross-section identification is (web depth in in.) ZS (flange width in in.) x (thickness in 1/1000 
in.), additional dimensions per AISI D100 (2017) design manual.  
2. Analytical formula of Glauz (2017) with cross-section properties generated from sharp corner 
model created in CUFSM or CFS as noted. 

 
3. Shell Finite Element Modeling 
A series of geometric and material nonlinear shell finite element models are developed in 
ABAQUS to explore the behavior of Zees bent about non-principal axes. A typical model is 
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depicted in Figure 2a. The Zee cross-section is meshed with the quadratic S9R5 shell element 
employing 20 elements across the web and 8 elements across the flange and lip and an aspect ratio 
of 1.0 along the length in the flange and near 1.0 throughout the section. The boundary conditions 
for the beam are an idealization of simply supported with warping free ends, this is achieved by 
restraining displacement in the plane of the cross-section at the member ends, and restraining 
longitudinal displacement of the cross-section at the mid-length as depicted in Figure 2a. The 
material is modeled as elastic-perfectly plastic implemented with von Mises yield criteria and 
isotropic hardening.  
 
The loading in the ABAQUS model is with end moments, consistent with Figure 1a; however the 
end moments are converted to stress and applied as edge tractions similar to CUFSM as shown in 
Figure 2b. For each cross-section studied a series of different angles, defined by θ of Figure 1b, 
for the axis of bending are considered. For example for the 6ZS2.25×105 the applied reference 
moments (ABAQUS outputs are a scaler multiple of these moments) are provided in Table 2 along 
with the decomposition into principal moments consistent with Figure 1c.     
 

Table 2: Applied bending moment decomposition vary with inclined bending axes. 
θ (degree) Ma=Mref M1 M2 

 kip-in kip-in kip-in 

transition angle -8 55.646 55.105 7.744 
-4 55.646 55.511 3.882 

principal-major 0 55.646 55.646 0.000 

transition angle 

4 55.646 55.511 -3.882 
8 55.646 55.105 -7.744 
12 55.646 54.430 -11.570 
16 55.646 53.491 -15.338 
20 55.646 52.291 -19.032 

geometric 23.481 55.646 51.039 -22.173 
principal-minor 90 55.646 0.000 -55.646 

 
In the ABAQUS nonlinear collapse analysis, the Riks solver is employed for equilibrium 
convergence. Note, no initial imperfections are considered in the initial collapse analysis. For any 
moment about non-principal axes there is always first order deformation in both principal axes – 
thus for global LTB the role of imperfections is less important. Imperfection sensitivity is explored 
further in Section 4.2.  
 
Typical results are provided for analysis of the 6ZS2.25×105 section with Fy = 50 ksi and L=144 
in. and bending about the geometric axis (θ = 23.481°).  Figure 3 provides the displaced shape and 
state of von Mises surface stress at peak load and in collapse, and Figure 4 provides the moment-
deformation response of the section at mid-span. At peak moment neither local or distortional 
deformations are present – indicating that the section successfully isolates lateral-torsional 
buckling and yielding. In collapse, spatial mechanisms form shown as yielded zones in the stress 
contours and falling moment capacity in the moment-deformation plots. As the figures indicate 
the section experiences primary deformations (Z-direction in the ABAQUS model) as well as 
lateral deformations (Y-direction in the ABAQUS model) and twist. 
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(a). (b).  
Figure 2: Finite element model (a) typical geometry (L=144 in.), boundary conditions, and mesh, (b) moment at end 
applied as stress, example shown for 6ZS2.25×105 section with θ=23.481° which is bending about geometric axis. 

 

 
(a) at peak moment. 

 
(b) post-peak response / end of simulation. 

Figure 3: Shell surface von Mises stress displayed on magnified deformed shape for 6ZS2.25×105 section with 
θ=23.481°, i.e., bent about geometric axis, note grey = yielded (Fy = 50ksi). 
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 (a).  

(b).  

(c).  
 
Figure 4: Moment-deformation plots for 6ZS2.25×105 with Fy = 50 ksi and L = 144in at θ=23.481°. (a) lateral web 
deflection (x of Fig. 1, Y in ABAQUS model), (b) vertical web deflection (y in Fig. 1, Z in ABAQUS model), (c) 

web twist.   
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4. Parametric Study 
To explore the response of the Zee sections across a variety of global slenderness values, the 
member length, L, and yield stress, Fy are varied as indicated in Table 3. To explore the impact of 
axis of bending, 10 angles for the axis of bending are considered: the two principal axes, the 
geometric axes, and 7 additional angles concentrated around the major principal axis. Two cross-
sections, thick and stocky enough to avoid local and distortional buckling are selected: 
6ZS2.25x105 and 10ZS2.25x105.  
 

Table 3: Summary of parametric study cases. 

Section 
Fy L θ  

(ksi) (in.) (degree) 
6ZS2.25×105 33, 40, 50 144, 180, 240 -8, -4, 0, 4, 8, 12, 16, 20, 23.481, 90 
10ZS2.25×105 33, 40, 50 144, 180, 240 -8, -4, 0, 4, 8, 11.711, 12, 16, 20, 90 

 
Typical moment-deformation results for the 6ZS2.25×105 with Fy = 50 ksi and L = 144 in. are 
summarized in Figure 5, where (a) provides the moment vs. midspan lateral deformation, (b) the 
moment vs. midspan vertical deformation, and (c) the moment vs. midspan twist. Only the case 
with major principal axis bending, θ = 0°, exhibits classic bifurcation behavior in the large 
deflection solution. All analyses have a peak moment, +/- angles of inclination for the bending 
axis do not have symmetric response. Wang et al. (2020) provides plots and numerical results for 
all conducted analyses, however the results are generally typical to Figure 5. 
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(a).  

(b).  

(c).  
 
Figure 5: Moment-deformation plots for 6ZS2.25×105 with Fy = 50 ksi and L = 144 in. (a) lateral web deflection (x 

of Fig. 1, Y in ABAQUS model), (b) vertical web deflection (y in Fig. 1, Z in ABAQUS model), (c) web twist. 
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4.1 Failure mode sensitivity to inclination of bending axis 
The lack of symmetry (i.e., compare moment-deformation at +8° vs. -8°) in the response for 
bending about the major principal axis, is at least initially surprising. However, when one considers 
the impact of the twist on the response the result can be understood more completely. As Figure 6 
highlights for the 6ZS2.25×105, L=144 in., Fy=50 ksi – for bending about an axis inclined 
positively from the major principal axis peak, stresses occur at the flange/web juncture and the 
failure mechanism is a relatively benign spatial plastic mechanism in the web. However, for 
bending about an axis inclined negatively from the major principal axis, the peak stresses are at 
the flange/lip juncture, which leads to more pronounced instability and a less favorable flange/lip 
failure mechanism.  

 

 
Figure 6: Lateral-torsional buckling in opposite directions for 6ZS2.25×105 with Fy = 50 ksi and L = 144 in. 
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4.2 Failure mode sensitivity to imperfection 
Cold-formed steel members have geometric imperfections due to the production process, shipping, 
and installation. Results are imperfection sensitive when the models have bifurcation; however, 
the imperfection sensitivity is reduced if primary deformation already exists in the buckling 
direction, e.g. in these models when twist has already initiated. This section of the paper briefly 
explores how imperfections impact the LTB flexural capacity for the target sections under bending 
moment about the major principal axis (a case that should be imperfection sensitive).  
 
For this small study a twist imperfection is applied. Only bending about the major principal axis 
(θ = 0°) is considered. An L/2292 imperfection is applied to the 6ZS2.25×105 and 10ZS2.25×105 
with Fy = 50ksi. The imperfection factor was estimated based on a maximum imperfection twist 
angle of no more than 2 degrees. As shown in Figure 7, introduction of the 2 deg. twist 
imperfection eliminates the sharp bifurcation nature of the response for the case with bending 
about the major principal axis (θ = 0°), and provides response in essence equivalent to bending 
about an axis approximately 2° from the principal axis. 
 

(a).  

 (b).  

Figure 7: Moment-web twist plots for (a) 6ZS2.25×105, (b) 10ZS2.25×105 section with  
Fy = 50 ksi., L = 144 in, and 2 deg. initial twist imperfection. 
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5. Studied Design Methods 
Nominal flexural capacity was predicted by three design methods: (1) AISI S100-16 approximate 
approach, (2) AISI S100-16 linear interaction approach, and (3) a new method considering direct 
bi-axial bending consistent with recent Direct Strength Method proposals. Note, Trahair (2018) 
has provided additional design methods for consideration. Here only the first three methods are 
detailed. 
 
5.1 Method 1: AISI S100-16 Approximate Approach  
Method 1 requires critical elastic lateral-torsional buckling stress 𝐹PQR to be calculated using Eq. 
F2.1.3-1 from AISI S100-16, which is an approximate expression for point-symmetric sections 
bending about the geometric axis:  
 
 F()# =

CT)>U
IV:

/σ#Xσ1 (5) 
 
where 𝐶Z is permitted to be conservatively taken as unity for all cases, 𝑟\ is the polar radius of 
gyration of cross-section about shear center, 𝐴 is the cross-section area, 𝑆_ is the elastic section 
modulus, 𝜎Ra and 𝜎b are the critical axial stress for elastic buckling about y-axis and torsion. The 
nominal stress 𝐹c is then determined as: 
 
 for F()# ≥ 2.78FX,    Fi = FX (6) 
 for 2.78FX > F()# > 0.56FX,   Fi =

=n
o
FX p1 −

=nst
uvswxy

z (7) 
 for F()# ≤ 0.56FX,    Fi = F()# (8) 
 
The nominal flexural strength, 𝑀cR, is defined by: 
 
 Mi# = SKFi (9) 
 
Common practice is to consider only bending about the geometric axis. So, if the perpendicular 
component of the moment is ignored, the strength for the axis of the applied moment is given by 
Eq. 10 where 𝛽 is the angle between the axis of bending and the geometric axis. 
 
 Mi =

��y
(.�	(�)

 (10) 
 
5.2 Method 2: AISI S100-16 Interaction Approach 
Method 2 requires that the strength be calculated independently about the major and minor 
principal axes, designated as Mi= and MiI, then combined in an interaction formula based on the 
demand. The engineer should calculate the elastic lateral torsional buckling moment, M()#�, first 
yield moment, MX�, and fully plastic moment M��; where i is either 1 or 2 and refers to bending 
about the major or minor principal axis to find Mi�. M()#� can be calculated using Glauz (2017) or 
CFS or CUFSM. MX� and M�� are calculated from first principles. Calculation of M�� is non-trivial 
since the plastic neutral axis does not typically coincide with the elastic neutral axis. Full solutions 
for the studied cases are provided in Wang et al. (2020). M�� need only be considered if inelastic 
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reserve is allowed in the section. Mi� is found similar to method 1, but here we allow the possibility 
of inelastic reserve. If inelastic reserve is not considered, Mni cannot exceed Myi in Eq. 11 or 12. 
 
  for M()#� > 18.9MX�,     Mi� = M�� (11) 

  for M()#� > 2.78MX�,  Mi� = M�� − �M�� − MX��
/�t�/�wxy��n.Iu

n.u�
 (12) 

 for	2.78MX� > M()#� > 0.56MX�,     Mi� =
=n
o
MX� p1 −

=n�t�

uv�wxy�
z (13) 

  for M()#� ≤ 0.56MX�,    Mi� = M()#� (14) 
 
Note, according to AISI S100-16 when local buckling is considered there is a maximum strength 
that is allowed due to liming the extreme fiber strain to 3 times the yield strain, i.e. CXℓ = 3. This 
implies for all cases the maximum strength must actually be slightly less than Mpi, i.e.: 
 
 Mi�	 ≤ MX� + (1 −

=
Ctℓ
3 )(M�� − MX�) (15) 

 
When these strength expressions are used in the linear interaction equation of AISI S100: 
 
 �6

��6
+ �3

��3
≤ 1.0 (16) 

 
For the special case of bending by moment M about an arbitrary axis at angle θ, demand M= =
M|cosθ| and MI = M|sinθ| after substitution and solving for M this provides the moment strength 
about an arbitrary axis: 
 
 Mi =

=
|w>��|
��6

�|����|��3

 (17) 

 
5.3 Method 3: Direct Bi-axial Bending Approach 
Method 3 considers the axis of bending directly. The strength formulas are familiar, but typically 
written in terms of global slenderness: 
 
 λ# = /MX/M()# (18) 
 for 𝜆R ≤ 0.23,    Mi = M� (19) 

 for 0.23 < λ# < 0.60,    Mi = M� − �M� − MX�
/�t/�wxy�n.Iu

n.u�
 (20) 

 for 0.60 < λ# < 1.34,     Mi =
=n
o
p1 − =n

uv
λ#IzMX (21) 

 for 1.34< λ#,    Mi = M()# (22) 
 
Note, as in Method 2 Eq. 15, due to local buckling limitations: 
 

 Mi ≤ MX + (1 −
=
o
)(M� − MX) (23) 
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In the preceding, My, Mp, and Mcre are for bending about the arbitrary axis. My is readily defined 
by first yield at an extreme fiber, Mp is more complex for bending about an arbitrary axis and 
calculations are detailed in Wang et al. (2020), Mcre may be determined using CUFSM or CFS 
elastic LTB analysis, or as an alternative method, M()# can be determined using the analytical 
method developed in Glauz (2017). 
 
6. Evaluation of Design Methods 
The simulation-to-predicted strength ratios for the three design methods are summarized in Table 
4 (results for every simulation are provided in Wang et al. 2020). Results are categorized by section 
and inclination angle for the axis of bending and broken out by relative slenderness, λ#, with Low 
less than 0.6, Medium between 0.6 and 1.5, and High greater than 1.5. In addition, the overall 
accuracy of the studied design methods is assessed in Figure 8. The results show Method 3 to be 
the most accurate, and that for the stocky/low slenderness cases Methods 2 and 3 essentially 
converge. Although Method 1 appears reasonable in Figure 8, as Table 4 makes clear Method 1 
can be largely unconservative or conservative and limitations on the applicability of Method 1 are 
needed. 
 

Table 4: Simulation-to-predicted ratios summary for all three methods 
 (Excluding 6ZS2.25×105 with L = 240 inches). 

Section & θ   
Ave. of Mmax1/Mn,1 Ave. of Mmax1/Mn,2 Ave. of Mmax1/Mn,3 Ave. of 

Mmax1/Mn,1 
Ave. of 

Mmax1/Mn,2 
Ave. of 

Mmax1/Mn,3 Low Mediu
m High Low Mediu

m High Low Mediu
m High 

10ZS2.25×105 0.13 1.05 1.54 0.99 1.11 1.26 0.99 0.85 1.09 1.10 1.14 0.93 
-8  0.86 1.16  0.89 0.99  0.77 0.86 0.92 0.91 0.79 
-4  1.00 1.18  0.90 0.95  0.79 0.86 1.07 0.92 0.82 
0  1.38 1.39  1.00 1.00  1.00 1.00 1.39 1.00 1.00 
4  1.30 1.66  1.14 1.30  0.95 1.18 1.44 1.20 1.04 
8  1.14 1.59  1.17 1.33  0.88 1.11 1.32 1.23 0.97 

11.711  1.08 1.84  1.18 1.55  0.85 1.27 1.23 1.26 0.94 
12  1.07 1.83  1.19 1.56  0.85 1.27 1.22 1.26 0.94 
16  0.98 1.84  1.21 1.64  0.83 1.25 1.15 1.29 0.92 
20  0.91 1.86  1.23 1.74  0.82 1.25 1.10 1.33 0.91 
90 0.13   0.99   0.99   0.13 0.99 0.99 

6ZS2.25×105 0.31 1.09 1.28 1.00 1.21 1.18 1.00 1.00 1.08 1.05 1.19 1.01 
-8  0.82   0.94   0.83  0.82 0.94 0.83 
-4  0.92 1.00  0.94 0.97  0.86 0.90 0.94 0.95 0.87 
0  1.19 1.19  1.04 1.03  1.04 1.03 1.19 1.04 1.04 
4  1.26 1.36  1.23 1.25  1.08 1.15 1.31 1.24 1.11 
8  1.19 1.42  1.24 1.35  1.02 1.16 1.25 1.27 1.06 
12  1.13 1.42  1.27 1.40  1.01 1.13 1.21 1.30 1.04 
16  1.17   1.34   1.04  1.17 1.34 1.04 
20  1.15   1.38   1.05  1.15 1.38 1.05 

23.481  1.13   1.41   1.07  1.13 1.41 1.07 
90 0.31   1.00   1.00   0.31 1.00 1.00 

Grand Total 
(Mean) 0.21 1.07 1.45 0.99 1.16 1.23 0.99 0.92 1.09 1.08 1.16 0.97 

Grand Total 
(COV) 0.52 0.16 0.19 0.15 0.15 0.21 0.15 0.14 0.14 0.36 0.18 0.16 
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Figure 8: Simulation versus prediction for the three methods about all cases (With Range limitation). 

 
Method 2 uses an interaction equation approach to strength prediction, therefore directly 
examining the performance against the interaction equation in AISI provides a useful assessment 
of the method as shown in Figure 9. Method 2 is consistently conservative.  
 

 
Figure 9: linear interaction for all cases (with inelastic reserve, exclude 6ZS2.25×105 with L = 240 inches). 
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Given that Method 2 is most naturally assessed through examination of the interaction expressions 
it may be insightful to view Method 3’s predicted interaction expression – i.e. what does the 
prediction of Method 2 look like when plotted in the biaxial bending interaction space. An example 
of such a plot is are provided in Figure 10, where Mn1 and Mn2 are the principal axis components 
of Mn determined using Method 3. These curves indicate the significant improvement that Method 
3 is able to make on the classic interaction expression – and provide further support for its 
recommendation as a primary method of strength prediction.  
 

 
Figure 10: Method 3 compares with linear reference line for 6ZS2.25×105. 

 
Method 3 is essentially a variant of the Direct Strength Method. As such, the method can be 
compared in a classical slenderness vs. strength plot as provided in Figure 11. In all of the data 
reported in this section the L=240 in. 6ZS2.25x105 results have been removed. This section rotates 
and plastifies about its minor axis and does not exhibit buckling in any meaningful sense.  
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Figure 11: Strength ratio versus slenderness for all cases from ABAQUS collapse analysis (With case detail, 

excluding 6ZS2.25×105 with L = 240 inches). 
 
7. Conclusions 
Applications for non-symmetric cold-formed steel members commonly induce biaxial bending 
since loads are almost never aligned with the principal axes of the section. Recently, Glauz (2017) 
developed an analytical solution for the lateral-torsional buckling (LTB) moment (Mcre) of a non-
symmetric section bent about an arbitrary axis. These provisions could potentially replace 
simplified expressions used in AISI-S100-16 for Mcre; however, the impact of applying this 
expression in design has not been fully assessed for LTB limit states. To assess the implications 
of employing the more accurate Mcre solution, a series of shell finite element collapse analyses 
were performed on two Zee-sections: 6ZS2.25×105 and 10ZS2.25×105, previously identified to 
be controlled by LTB, as opposed to local or distortional buckling. The collapse simulations were 
performed on sharp corner models of the Zee shapes under isolated and equal end moments and 
were augmented by eigenvalue buckling analysis in ABAQUS and finite strip method analyses 
conducted in CUFSM and in CFS. All of the ABAQUS shell finite element collapse simulations 
converged at large enough deformations to achieve at least one peak moment.  
 
Three design approaches were compared to the conducted simulations: (1) AISI-S100-16 
approximate approach, (2) AISI-S100-16 interaction approach, and (3) direct bi-axial bending 
approach. For method 1, the AISI S100-16 approximate approach uses a conservatively low 
estimate of Mcre, but ignores bending about anything other than the geometric axis – this 
combination of conservative and unconservative assumptions balances out as long as the bending 
axis is reasonably close to the geometric axis – for large deviations it is problematic and invalid. 
For method 2, the AISI-S100-16 interaction approach uses the elastic buckling and strength about 
the major- and minor-principal axes as anchors and gives reasonable predictions, but can be overly 
conservative particularly if inelastic reserve is ignored. For method 3, the direct bi-axial bending 
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approach is a rational extension of the Direct Strength Method and uses the buckling and yielding 
solutions about the arbitrary axis of bending – and is shown to provide the best overall prediction 
of the strength. Many of the bi-axial bending finite element collapse simulations exhibited large 
rotations which would likely be deemed unacceptable in practice. Future study would be 
appropriate to estimate the rotation and establish serviceability limits or guidelines. In addition, 
this study did not assess the impact of moment gradient, nor that of local or distortional buckling 
for bending about arbitrary axes.   
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