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Abstract
Simply-supported, single-span, C-section and Z-section cold-formed steel beams subjected to a
uniformly distributed load on the top flange are analyzed. Both gravity loading and wind uplift
are considered. Continuous elastic restraints resist bending and twisting. The lateral restraint acts
on the top flange. It is assumed that the thin-walled beams are linearly elastic and that the cross
section maintains its shape during deformation. Lateral-torsional deformation for the C-section
beam involves twist and bending in the weak direction. For the Z-section beam, the deformation
involves coupling between bending in both the weak and strong directions, along with the twist.
The governing equilibrium equations are solved numerically. The problem is motivated largely
by roof purlins in metal buildings. Numerical results demonstrate the effects of load magnitude,
bending and twisting restraint stiffnesses, and roof slope (with top flange facing either upslope or
downslope). Finally, lateral-torsional buckling for particular loadings is discussed.

1. Introduction
This study is concerned with the deformation of partially restrained C-section and Z-section purlins
and girts. Applications include metal building roof and wall systems, with through-fastened roofs
(walls) or standing-seam roofs, subjected to gravity (pressure) or uplift (suction) loading (Yang
and Bai 2017). The resultant loading on the purlin or girt acts eccentrically on a flange, causing
translation, bending, and twist. Distortion of the cross section is neglected. The concept of buck-
ling is discussed at the end of the paper.

Restrained Z-section and C-section beams under gravity and/or uplift loading have been analyzed
and/or tested in a number of investigations, including Ye et al. (2002, 2004), Li (2004), Chu et
al. (2004, 2005, 2006), Seek and Murray (2008), Li et al. (2012), Ren et al. (2012, 2016), Wu
et al. (2014), Zhao et al. (2014), Zhu et al. (2014), Gajdzicki and Goczek (2015), Gosowski et
al. (2015), Zhang and Tong (2016), Seek and Escobales (2016), and Bai et al. (2018). Values of
the rotational stiffness are determined or used in Lucas et al. (1997), EN 1993-1-3 (2006), Vrany
(2006), Katnam et al. (2007a, 2007b, 2008), Li et al. (2012), Gao and Moen (2012, 2014), Ren et
al. (2012, 2016), Kujawa and Szymczak (2014), Wu et al. (2014), Yuan et al. (2014), Gajdzicki
and Goczek (2015), Penava et al. (2015), Seek and Escobales (2016), Balázs and Melcher (2017),
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Balázs et al. (2017), Lei and Li (2017), Bai et al. (2018), Gajdzicki (2018), Tang et al. (2018), and
Wang et al. (2018).

S

C
x,u

y,v

ax

ay

q

φ

kx

k
φ

S,C x,u

ax

ay

q

φ

kx

k
φ

y,v

(a) (b)

Figure 1: Cross sections: (a) C section; (b) Z section

In previous work with distributed elastic restraints, the authors analyzed the flexural-torsional de-
formations of elastic columns having initial crookedness and twist (Plaut and Moen 2019). Ex-
amples of compressed C-section, T-section, and I-section columns were considered there, and the
effects of axial load, bracing stiffness, and relative orientations of the imperfections were investi-
gated.

The analysis will be presented in Section 2. For no roof slope, results for Example 1, involving a
beam with a C-section, will be described in Section 3, followed by results for Example 2, where
the beam has a Z-section, in Section 4. The effect of roof slope on both examples will be discussed
in Section 5. In Section 6, the concept of a critical load for a different application of the load in the
two examples will be discussed, followed by concluding remarks in Section 7.

2. Formulation
In the cross sections in Fig. 1 (with no roof slope), the centroid is denoted C and the shear center
is denoted S. The centroidal coordinate axes are x (horizontal) and y (vertical). The axis along
the centroids is z (into the page in Fig. 1), with 0 ≤ z ≤ L. The load is modeled as a uniformly
distributed load q applied at the center of the top flange, with q positive for gravity loading and
negative for uplift loading. The distances from the shear center to the point of application of q are
ax parallel to the x axis and ay parallel to the y axis.

The single-span beam is assumed to be uniform and linearly elastic. It has length L, modulus of
elasticity E, shear modulus G, moments of inertia Ix and Iy about the centroid, product of inertia
Ixy, torsion constant J, and warping constant Cw. The weight of the beam is neglected.

The continuous bracing is linearly elastic. It has rotational stiffness kφ per unit length along the z
axis, and lateral stiffness kx per unit length resisting translation parallel to the x axis and acting at
the top of the top flange (see Fig. 1).

The deflections of the centroid along the x and y axes are u(z) and v(z), respectively, and the
twist is φ (z), positive if clockwise in Fig. 1. It is assumed that deformations are small, with
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1+(u′)2 ≈ 1,1+(v′)2 ≈ 1, sinφ ≈ φ , and cosφ ≈ 1.

When the roof has a slope, the slope angle is denoted θ , as shown in Fig. 2 (Seek and Murray
2008, Seek and Escobales 2016). If θ > 0, the top flange faces upslope; if θ < 0, the top flange
faces downslope. The components of q along the positive x and y axes are denoted qx and qy,
respectively, and are given by

qy = qcosθ ,qx = –qsinθ . (1)

When there is no roof slope, θ = 0, qx = 0, and qy = q.

q θ
qxqy

q
qxqy

Figure 2: Cross sections with roof slope θ

The governing equilibrium equations are as follows:

EIyu′′′′+EIxyv′′′′+ kx(u+ayφ) = qx, (2)

EIxv′′′′+EIxyu′′′′ = qy, (3)

ECwφ
′′′′–GJφ

′′+ kxay(u+ayφ)+ kφ φ = qx(ay–axφ)+qy(ax +ayφ), (4)

where primes denote differentiation with respect to z.

Some papers (e.g., Li et al. 2012, Ren et al. 2012, Bai et al. 2018) are missing the terms on the
right-hand side of Eq. (4) that involve φ . Papers with such terms include Khelil and Larue (2008)
and Gosowski et al. (2015).

One can eliminate v by solving Eq. (3) for v′′′′ and substituting the result into Eq. (2), giving

E(IxIy–I2
xy)u

′′′′+ kxIx(u+ayφ) = qxIx–qyIxy. (5)

The ends of the beam are assumed to be simple supports (pinned), free to warp and to rotate about
the x and y axes, but not allowed to rotate about the z axis or to deflect in the x and y directions.
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The boundary conditions at the ends z = 0 and z = L are u = u′′ = v = v′′ = φ = φ ′′ = 0.

Equations (2)-(4), or (4) and (5), along with the boundary conditions, can be solved analytically, but
the solution is not simple (unless kx = 0). Here numerical results are obtained by solving the bound-
ary value problem using a shooting method with the subroutines NDSolve and FindRoot in Mathe-
matica (e.g., Virgin et al. 2018). (If the symmetry of the displacements is utilized and the analysis is
conducted from z = 0 to z = L/2, the conditions at z = L/2 are u′ = u′′′ = v′ = v′′′ = φ ′ = φ ′′′ = 0.)
Equations (2)-(4) were also recently used to numerically calculate the gravity and uplift load-
deformation response of a 4-span continuous purlin supporting a standing seam roof (Moen 2020).

3. Example 1 (C Section) with No Roof Slope
The first example is a cold-formed steel stud beam with singly symmetric 9CS2.5x059 C cross
section (AISI 2017) (see Fig. 1(a)). The beam is assumed to have L = 7620 mm (25 ft), Ix =
4.287× 106 mm4 (10.3 in.4), Iy = 290,500 mm4 (0.698 in.4), Ixy = 0, J = 424.56 mm4 (0.00102
in.4), Cw = 3.1956× 109 mm6 (11.9 in.6), E = 200 kN/mm2 (29,000 kip/in.2), G = E/2.6, ax =
57.67 mm (2.27 in.), and ay = 114.3 mm (4.5 in.).

Since Ixy = 0, Eq. (3) becomes uncoupled from Eqs. (2) and (4), and lateral-torsional deformation
involves twist φ and deflection u in the weak direction. A typical shape of the twist φ(z) is shown
by the solid curve in Fig. 3, which corresponds to the case q = 1 kN/m, kx = 0.1 N/mm2, and kφ =
1000 N/rad.
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Figure 3: Shapes of twist for q = 1 kN/m, kx = 0.1 N/mm2, and kφ = 1000 N/rad for Example 1 (solid) and Example 2
(dashed)

In all the following figures, the load q will be plotted as a function of the twist φ(L/2) at the center
of the beam, which will usually have the maximum twist magnitude. For gravity loading, q and
φ(L/2) will be positive, and for uplift loading they will be negative.

The case kx = 0 is considered in Fig. 4 for gravity loading and in Fig. 5 for uplift loading. Curves
for kφ = 0, 100, 200, 300, 400, and 500 N/rad are presented. As kφ increases, the load magnitude
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corresponding to a given twist magnitude increases. In Fig. 4, as the load increases, the slope of
each curve decreases. In Fig. 5, as the load magnitude increases, the magnitude of the slope of
each curve increases. The range of q is 0 to 2 kN/m in Fig. 4, and –14 kN/m to 0 in Fig. 5. Due
to these different ranges, the two figures are not combined over the total range –0.4 rad ≤ φ ≤ 0.4
rad.
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Figure 4: Gravity load versus central twist for Example 1 with kx = 0
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Figure 5: Uplift load versus central twist for Example 1 with kx = 0

Similar results for the case kx = 0.1 N/mm2 are presented in Figs. 6 and 7. The values of kφ are
now 250, 500, 750, 1000, 1250, and 1500 N/rad. The range of q is 0 to 6 kN/m in Fig. 6, and –50
kN/m to 0 in Fig. 7.
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Figure 6: Gravity load versus central twist for Example 1 with kx = 0.1 N/mm2
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Figure 7: Uplift load versus central twist for Example 1 with kx = 0.1 N/mm2

In Figs. 8 and 9, the rotational stiffness kφ = 0, and curves are plotted for kx = 0, 0.001, 0.003,
0.01, and 0.1 N/mm2. Curves for kx > 0.1 N/mm2 would be almost the same as the curves for kx =
0.1 N/mm2. The range of q is 0 to 0.16 kN/m in Fig. 8, and –0.7 kN/m to 0 in Fig. 9.
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Figure 8: Gravity load versus central twist for Example 1 with kφ = 0
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Figure 9: Uplift load versus central twist for Example 1 with kφ = 0

Finally, the case kφ =1000 N/rad is treated in Figs. 10 and 11. In Fig. 10 for gravity loading, the
curve for kx = 0 (dashed) is almost the same as the curve for kx = 0.1 N/mm2 (solid). For uplift
loading in Fig. 11, the curves separate perceptibly as the load magnitude decreases past q = –8
kN/m. The range of q is 0 to 4 kN/m in Fig. 10, and –35 kN/m to 0 in Fig. 11. Again, curves for
kx > 0.1 N/mm2 would be almost the same as the curve for kx = 0.1 N/mm2, so changes in kx do
not have a large influence on the twist in Example 1 when kφ =1000 N/rad.
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kx = 0.1 N/mm2
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Figure 10: Gravity load versus central twist for Example 1 with kφ = 1000 N/rad
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Figure 11: Uplift load versus central twist for Example 1 with kφ = 1000 N/rad

Even though the vertical deflection v(z) is independent of the lateral-torsional displacements, it is
noted that for Example 1 the maximum magnitude of the slope v′(z), occurring at the ends of the
beam, is larger than 0.3 if the magnitude of q is larger than 13.95. Hence the lower portions of
some of the curves in Figs. 7 and 11 do not satisfy the assumption of small slopes with respect to
vertical deflection.

4. Example 2 (Z Section) with No Roof Slope
The second example is a cold-formed steel beam with 8ZS2.25x059 Z cross section (AISI 2017)
(see Fig 1(b)).

The beam has L = 7620 mm (25 ft), Ix = 3.230× 106 mm4 (7.76 in.4), Iy = 449,530 mm4 (1.08
in.4), Ixy = 865,760 mm4 (2.08 in.4), J = 397.09 mm4 (0.000954 in.4), Cw = 3.4104× 109 mm6
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(12.7 in.6), E = 200 kN/mm2 (29,000 kip/in.2), G = E/2.6, ax = 27.826 mm (1.096 in.), and ay =
101.6 mm (4.0 in.). During uplift, the line of action of q passes through the shear center when φ =
–0.278 rad.

Since Ixy 6= 0, the deformation involves the deflections u and v in the weak and strong directions,
respectively, along with the twist φ . A typical shape of the twist φ(z) is shown by the dashed curve
in Fig. 3, which corresponds to the case q = 1 kN/m, kx = 0.1 N/mm2, and kφ = 1000 N/rad.

Figs. 12 and 13 depict results for the case kx = 0 under gravity and uplift loading, respectively,
with kφ = 0, 100, 200, 300, 400, and 500 N/rad. The range of q is 0 to 3 kN/m in Fig. 12, and –3
kN/m to 0 in Fig. 13.

In Figs. 12, 13, 17, 19, and 20, when the maximum slope magnitude |u′(0)| of the lateral deflection
is larger than 0.3, the curve is dashed. Hence, due to the assumption of small slopes, these dashed
portions may not be reliable. In Fig. 13, the dashed portions begin at q = –2.64 kN/m.
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Figure 12: Gravity load versus central twist for Example 2 with kx = 0
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Figure 13: Uplift load versus central twist for Example 2 with kx = 0

Results for the case kx = 0.1 N/mm2 are presented in Figs. 14 and 15, respectively, for gravity and
uplift loading. The values of kφ are 250, 500, 750, 1000, 1250, and 1500 N/rad. The range of q is
0 to 6 kN/m in Fig. 14, and –35 kN/m to 0 in Fig. 15. However, in Fig. 15 the maximum slope
magnitude |v′(0)| of the vertical deflection is larger than 0.3 if q < –10.2 kN/m for the bottom
curve and if q < –10.1 kN/m for the other curves.
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Figure 14: Gravity load versus central twist for Example 2 with kx = 0.1 N/mm2
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Figure 15: Uplift load versus central twist for Example 2 with kx = 0.1 N/mm2

In Figs. 16 and 17, there is no torsional restraint (kφ = 0). Curves for kx = 0, 0.001, and 0.1 N/mm2

are depicted in Fig. 16 for gravity loading. The curves intersect and are close to each other. For
uplift loading in Fig. 17, curves for kx = 0, 0.0002, 0.0005, 0.001, and 0.1 N/mm2 are shown. The
range of q is 0 to 0.15 kN/m in Fig. 16, and –4 kN/m to 0 in Fig. 17. As in Example 1, results for
large lateral stiffnesses are close to those for kx = 0.1 N/mm2.
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Figure 16: Gravity load versus central twist for Example 2 with kφ = 0
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kx = 0 N/mm2
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Figure 17: Uplift load versus central twist for Example 2 with kφ = 0

Fig. 18 depicts the shape of the twist φ(z) for the case q = –30 kN/m, kx = 0.1 N/mm2, and kφ =
1500 N/rad. The maximum magnitude of the twist does not occur at the center of the beam in this
atypical case.
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Figure 18: Shape of twist for Example 2 with q = –30 kN/m, kx = 0.1 N/mm2, and kφ = 1500 N/rad

Finally, kφ = 1000 N/rad in Figs. 19 and 20, with curves plotted for kx = 0, 0.0005, 0.001, 0.003,
0.01, and 0.1 N/mm2. The range of q is 0 to 6 kN/m in Fig. 19, and –25 kN/m to 0 in Fig. 20. In
Fig. 20, the magnitude of |v′(0)| is greater than 0.3 for kx = 0.1, 0.01, and 0.003 N/mm2, respec-
tively, if q < –10.1, –9.2, and –7.9 kN/m.

Comparing these figures to Figs. 10 and 11 having the same rotational stiffness, it is seen that
changes in kx have a greater effect for Example 2 than for Example 1.
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Figure 19: Gravity load versus central twist for Example 2 with kφ = 1000 N/rad
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Figure 20: Uplift load versus central twist for Example 2 with kφ = 1000 N/rad

5. Examples 1 and 2 with Roof Slope
The effect of roof slope angle θ is considered now (see Fig. 2). Numerical results will be presented
for the range –0.5 ≤ θ ≤ 0.5 where θ is in radians. A low slope with pitch 1:12 corresponds to
θ = 0.083 rad = 4.76◦, and a high slope with pitch 6:12 corresponds to θ = 0.46 rad = 26.57◦. It
is noted that θ is positive if counter-clockwise, whereas the beam twist φ is positive if clockwise
(see Fig. 1).

Uplift pressure due to wind is perpendicular to the roof. Therefore it acts the same as wind up-
lift for the case when there is no roof slope, and the uplift results in Sections 3 and 4 are applicable.

For gravity loading, results are presented in Figs. 21-24. The twist φ(L/2) at the center of the
beam is plotted as a function of the roof slope angle θ . Each curve has a maximum value of the
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central twist at some positive value of θ (i.e., with the beam in an upslope orientation, as in Fig.
2).
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Figure 21: Central twist versus roof slope for Example 1 with kx = 0.1 N/mm2 and kφ = 1000 N/rad
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Figure 22: Central twist versus roof slope for Example 1 with q = 1 kN/m and kx = 0.1 N/mm2
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Figure 23: Central twist versus roof slope for Example 2 with kx = 0.1 N/mm2 and kφ = 1000 N/rad
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Figure 24: Central twist versus roof slope for Example 2 with q = 1 kN/m and kx = 0.1 N/mm2

Figs. 21 and 22 are associated with Example 1, and Figs. 23 and 24 with Example 2. In Figs. 21
and 23, kx = 0.1 N/mm2, kφ = 1000 N/rad, and curves are plotted for q = 1, 1.5, 2, 2.5, 3, and 3.5
kN/m. In Figs. 22 and 24, q = 1 kN/m, kx = 0.1 N/mm2, and curves are plotted for kφ = 250, 300,
400, 500, 700, and 1000 N/rad. As q decreases or kφ increases, the effect of changes in the roof
slope angle θ decreases (i.e., the curves become flatter).

6. Buckling
Consider global buckling for the case of no roof slope. (Local and distortional buckling are not
considered in this paper.) Based on the linearly elastic behavior assumed here, lateral-torsional
buckling (LTB) cannot occur for uplift because the compressed flange lateral deformations for the
two (combined) loading actions, flexure and direct torsion, oppose each other.

6.1 C-Section Beams
For the C section in Fig. 1(a), LTB can occur under gravity loading if ax = qx = 0, with the vertical
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load acting on an extension of the top flange, having its line of action pass through the shear center
S. Equations (2) and (4) become homogeneous equations in u(z) and φ(z), which are proportional
to sin(πz/L) at the critical load q = qcr given by

qcr =
1
ay

[
kφ + rGJ+ r2E

(
Cw +

ay
2Iykx

kx + r2EIy

)]
(6)

where r = (π/L)2.

If the parameters for Example 1 are used in Eq. (6), the resulting value of qcr is the horizontal
asymptote for curves such as those in Figs. 4 and 6 (i.e., the value of q would approach qcr if the
horizontal axis were extended to very high values). One can also relate qcr to the problem treated in
Section 3 by plotting q/qcr as a function of the central twist, which is shown in Fig. 25 for kx = 0.1
N/mm2. Curves are plotted for kφ = 0 and 1500 N/rad, and results for rotational stiffnesses between
these values lie in the narrow band between the two curves. To apply Fig. 25, for example, if kx =
0.1 N/mm2 and kφ = 0, the load that would cause φ(L/2) = 0.4 rad is q = 0.381qcr = (0.381)(0.399
kN/m) = 0.152 kN/m.
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Figure 25: Ratio q/qcr versus central twist for Example 1 with gravity loading and kx = 0.1 N/mm2

6.2 Z-Section Beams
For the Z section in Fig. 1(b), LTB can occur under gravity loading if there is no lateral spring (kx
= 0) and if the load acts along the major principal axis, which requires the load to be angled (see
Fig. 2) with its line of action passing through S. The angle α of the principal axes relative to the
x and y axes in Fig. 1 is found from tan(2α) = −2Ixy/(Ix–Iy) (Beer et al. 2019). For Example 2,
this yields |α| = 0.278 rad, and the angled load is located at ax = 29.049 mm (1.144 in.), slightly
larger than the value of ax in Section 4.

For Example 2 with kx = 0 and the downward load acting along the major principal axis, the critical
load for LTB is
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qcr =
kφ + rGJ+ r2ECw√

a2
x +a2

y

(7)

where r = (π/L)2. It increases linearly with kφ . Curves for kφ = 0 and 1500 N/rad are shown in
Fig. 26, similarly to Fig. 25. As an example, if kx = kφ = 0, the load that would cause φ(L/2) =
0.4 rad is q = 0.554qcr = (0.554)(0.236 kN/m) = 0.131 kN/m.

0
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Figure 26: Ratio q/qcr versus central twist for Example 2 with gravity loading and kx = 0

7. Concluding Remarks
Lateral-torsional deformations of partially restrained, single-span, simply-supported C-section and
Z-section beams were investigated. On the top flange, the beams were subjected to distributed load-
ing (gravity or uplift) and to elastic restraints modeled as distributed lateral and rotational springs.

It was assumed that the beam and restraints were linearly elastic, and that the deformations were
small. Distortion of the cross section was neglected. The equilibrium equations were presented
and were solved numerically. Results for the two examples demonstrated the effects of load mag-
nitude, lateral and torsional restraint stiffnesses, and roof slope on the twist at the center of the
beam.

Naturally, the stiffness of the torsional restraint tended to have a large effect on the twist. In some
cases, the lateral stiffness had little influence on the twist (see Figs. 10, 11, and 16). For kx >
0.1 N/mm2, additional lateral stiffness has little effect. As the roof slope was varied from a high
downslope configuration to being flat and then to a high upslope configuration, the maximum twist
occurred for a slight upslope.

In Section 6, the concept of a critical load was considered for the case of no roof slope. The lin-
early elastic analysis used in this paper, with the load applied at the midpoint of the top flange of a
C-section or Z-section beam, does not lead to any buckling. For a modified loading (vertical grav-
ity load acting through the shear center for a C-section beam, or acting with a particular location
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and angled orientation for a Z-section beam with no lateral bracing), lateral-torsional buckling can
occur. Relations between the maximum twist for the actual loading and the associated critical load
for the modified loading were discussed.
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