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Abstract 

Global stability is a critical aspect of reticulated shells and may govern the design of these 

structures. because of the shallow geometry and the large deflection coming from such structures. 

This global instability might occur in the form of snap-through buckling before even the critical 

loads of the members are reached. Literature provides approximate theories for calculating these 

limits, by assuming them as equivalent thin shells and checking the adequacy of members using 

clauses of design codes for members of the reticulated shells. However this leads to conservative 

cross-sections as required by codal provisions of member strength and stability, even though the 

global shell buckling may govern the design of reticulated shells. This shows the need for an 

accurate prediction of the critical loads of these systems. Inelastic postbuckling analysis by several 

researchers largely consider apex loading, thus neglecting the distribution of loads across all nodes 

of the dome, present in actual structures. Thus in order to have a practically usable prediction 

equation, these distributed loadings need to be considered. This study has uses a geometric non-

linear analysis based on a corotated – updated Lagrangian (CR-UL) formulation to predict the 

behavior of the systems. This study shows that neglecting load distributions is highly inaccurate 

and on the conservative side.  The effect of important geometric parameters on the limit loads are 

also discussed. The study also attempts a linear regression equation for predicting the limit and 

ultimate loads of the dome. 

 

1. Introduction 

The stability of reticulated domes has been studied extensively for ascertaining with practical 

precision the critical loads. This has not been achieved satisfactorily not only due to the nonlinear 

behavior, but also because the extent of influence of each physical parameter is not fully clear. 

Through reading of available literature to date, the critical factors affecting the stability of these 

structures can be viewed at three different levels namely – global stability, local (member) strength 

and stability, and connection idealisations. Indeed the literature present is such that the studies 

undertaken in them are found to address the effect of one of the above factors. Even the variations 

present in each of these components has deserved research in isolation to study its effect, e.g., the 

variations in connection components such as socket joints, plated connectors etc are unique.  
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Chronology-wise the earliest researchers such as Papadrakakis (1983), Hill et al (1989), Yang et 

al (1997), Jayachandran et al (2004), Thai and Kim (2009) etc worked on quantifying the effect of 

member strength and stability on that of the whole structure. Constitutive models for member 

stress-strain relations and the development of robust solution procedures to overcome the limit 

points, in particular the works of  Argyris et al (1982), Crisfield (1981), Bergen and Soreide (1978), 

Belytschko and Hseih (1973), Chan et al (1988) et al. One of the key concerns expressed through 

all the literature in this period (of the literature referred above) is the absence of a procedure that 

provides means of estimating the limit loads of the structure, barring general recommendations in 

some documents such as the working committee report of the International Association of Shell 

and Spatial Structures (IASS). Recent research has shown a gradual shift towards studying the 

behavior of different kinds of connections and the performance of the structure with each type of 

connection. Key literature in this area include those by Lopez et al (2007), Ahmadizadeh and 

Maleek (2014), Ma et al (2015), Guo et al (2015), Han et al (2016), Xiong et al (2017) etc. The 

findings of these studies establish that the characteristics of the types of joints have a significant 

bearing on the limit load of the structure. A key point of mismatch with reality in the majority of 

the studies is that the analyses are performed for concentrated loads the apex, rather than with 

loading across the surface as is expected in reality (from wind pressures). 

 

Nowadays the availability of commercial FEM software enables designers to verify the structure 

against limit point failures. This however does not have the same convenience as calculations using 

closed form expressions, the oldest of which is the Wright’s formula (1965). Lopez et al (2007) 

and Saito (1986) suggest analyticals expression for obtaining critical pressures of single layer 

domes. These however are confined to elastic regimes and do not match the nonlinear behavior of 

domes. 

 

Following the above discussions, the authors of this paper propose the following aims: (a) compare 

the limit point behavior of single layer domes under two distributed loading patterns with that of 

apex loading of equivalent magnitude, (b) check the applicability of the Wright’s formula for the 

two loading patterns and (c) propose closed-form equations to obtain the critical load of single 

layer domes. The above studies are performed on domes of two geometries as discussed below.     

 

2. Postbuckling analysis using CR-UL formulation 

For the post-buckling analysis in this study, the corotated-updated Lagrangian (CR-UL) nonlinear 

formulation is used. The total load-deflection behavior of reticulated shells both before and after 

limit points like snap-through can be traced using the formulation. The updated Lagrangian 

formulation uses all quantities in the finite element equations referred to the last known 

configuration as the reference configuration rather than the original configuration in a total 

Lagrangian formulation. In the corotated approach, the deformations of the elements are explicitly 

separated into rigid body displacements and stress producing (natural) deformations. The detailed 

mathematical explanations and derivations are given in Jayachandran et al (2004).  

 

To make the discussion short, the final equations for obtaining the local and global tangent stiffness 

are alone listed below. 

 

𝐾𝐿 =  
𝐴

𝐿
(𝐶 + 𝜎) (1) 
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𝐾𝐺 =  𝐴𝑇(𝐸𝑇𝐾𝐿𝐸 + 𝑅𝑥2𝐵)𝐴 (2) 

 

Figure 1: Description of motion in the CR formulation 

 

Here 𝐶  is the constitutive matrix, 𝜎  is the stress and 𝐴  and 𝐸  are transformation matrices 

corresponding to the different configurations in Fig 1. A bilinear hardening formulation (Axelsson 

and Samuelsson, 1979) is used for incorporating yielding in the members using the state 

determination procedure (Bhatti, 2006) (Fig. 2 and Eqs. 3-5). Modifications for reduced member 

stiffness due to buckling is as used by Jayachandran et al (2004) in Eqs. 6-7. 

 

 

Figure 2: Bilinear stress-strain model with mixed hardening 

  

𝛿𝐸𝑥𝑥
′𝑝 =  (1 − 𝛽)𝛿𝐸𝑥𝑥

′  (3) 

𝛿𝜎𝑦 = 𝑀𝐻𝛿𝐸𝑥𝑥
′𝑝

 (4) 

𝛿𝛼 =  (1 − 𝑀)𝐻𝐸𝑥𝑥
′𝑝

 (5) 

𝐹Δ =  [1 −  
1

1 +
2

3
(

𝛿𝑐

𝐿
)

2] (6) 
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𝐾𝐿
′ =  

1

[(
1

𝐴

𝐿
(𝐶+𝜎)

) +  
𝐹Δ𝐿

𝑅𝑥2
]

 
(7) 

 

The plastic and total strain increments are 𝛿𝐸𝑥𝑥
′𝑝

 and 𝛿𝐸𝑥𝑥
′ , and the portion of elastic in total strain 

increment is 𝛽. The changes to the subsequent yield stress and stress shift vectors are given by 

𝛿𝜎𝑦  and 𝛿𝛼  in terms of the hardening parameter 𝑀  and hardening modulus 𝐻 . The reduced 

member stiffness after buckling 𝐾𝐿
′  is in terms of the length 𝐿 and midlength deflection 𝛿𝑐. The 

solution procedure adopted for traversing the limit point is the minimum residual displacement 

method by Chan (1988). The overall procedure is implemented in a computer program. This 

program is used to undertake a series of analysis on single-layer domes under different loading 

patterns. Both elastic and inelastic analyses (i.e., considering member yielding and buckling) can 

be done separately using the above program.  

 

3. Analysis series on single-layer domes with distributed loading patterns/ 

 

3.1  Validation example 

In order to show the validity of the procedure, the results of analyzing the 168-bar dome present 

in Thai and Kim (2009) is shown in Fig 3. The load factor is for a reference load of 1000 N. Note 

that the literature analyses the structure only with apex loading, which matches the results from 

this formulation. However, performing the analysis on the same structure shows the inherent 

conservativeness while adopting apex loading conditions for finding limit points, as compared to 

more practical distributed loading. 

  

 

Figure 3: Postbuckling curves of 168-bar dome (Thai and Kim,   ) 

 

3.2 Geometry and dimensions of domes 

Two dome geometry types are studied in this paper. Geometry Type 1 has a uniform arrangement 

of the members such that all members have same length, similar to but not exactly at Geodesic 
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dome. Here it shall be called as Geodesic for convenience. Geometry Type 2 is Lamella in which 

member lengths get longer between lower rings of the dome. These geometries are shown in Fig 

4. Since the member rigidities are controlling parameters more than the cross-sectional areas and 

moment of inertias themselves, the latter are kept same for all examples. The cross-sectional area 

and moment of inertia correspond to a steel tube of 80 mm diameter and 5.72 mm thickness having 

Modulus of Elasticity 2.1 × 108 kN/m2. All other properties of the dome varied for the study are 

shown in Table 1 and Table 2. For convenience, the final calculated average values of the axial 

and flexural rigidities are also shown in the table. The reference load for all examples amounts to 

100 kN, which is applied as a point load downward at the apex. For distributed loading patterns, 

two conditions are adopted, one with downward (pressure) loading at all the nodes, and one with 

pressure loading on one half and uplift on the other (with loading downward at the apex). For both 

distributed loading conditions, 40 kN downward load is applied at the top while the balance 60 kN 

is distributed equally at all rings. For example, if a dome had 3 rings (excluding at support level), 

the remaining two rings will carry a total of 30 kN each, and if there were 16 nodes on the ring, 

each node would carry 1.875 kN. These are depicted in Fig 5. This distribution of the load in the 

half pressure-half uplift case is close to adopting external wind pressure coefficients of +0.3 for 

windward quarter, +0.4 for central portion and -0.3 for the leeward quarter. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4: Geometry of Lamella Type dome (left) and Geodesic Type dome (right) 

 

 

Figure 5: Loading distribution patterns on the domes 

 

3.3 Discussion of results 

The postbuckling curve for one example of the geodesic dome is shown in Fig 6 and Fig 7 for 

elastic and inelastic analysis runs. It is seen in this example that, in both cases the limit loads 

predicted with applying distributed loads is around 2.6-2.7 times that obtained by loading only the 
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apex. The inelastic analysis plot also gives information on the ultimate loads of the dome i.e the 

point beyond which the solution increments fail to converge due to buckling of a group of members 

(the final point of the graph) or when yielding of a group of members takes place. In Fig 7, since 

the ultimate load point was by buckling of members, the final point of the graph is taken as the 

ultimate load. In the half pressure-half uplift case, the solution diverges before the plot resumes 

positive trend and hence the ultimate load point was not determined. This happened for most of 

the examples with half pressure-half uplift loading. 

 
Table 1: Properties of Geodesic type domes (units: kN, m)  

S.No Dome model Span/Rise Rings 
Members at 

apex 
AE/L EI/L 

1.  Geodesic 1 5 2 8 53532.6 48.52 

2.  Geodesic 2 6 2 8 37698.5 34.17 

3.  Geodesic 3 5 2 12 54576.5 49.47 

4.  Geodesic 4 4 2 16 58749 53.25 

5.  Geodesic 5 8 3 12 25049.1 22.70 

6.  Geodesic 6 8 3 8 21373.3 19.37 

7.  Geodesic 7 8 3 16 28087.8 25.46 

8.  Geodesic 8 8 4 12 50188.9 45.49 

9.  Geodesic 9 8 4 8 36019 32.65 

10.  Geodesic11 10 2 8 14735.9 13.36 

11.  Geodesic12 10 2 12 17157.3 15.55 

12.  Geodesic13 10 2 16 18553.9 16.82 

13.  Geodesic14 10 3 8 21648.6 19.62 

14.  Geodesic15 10 3 12 25121 22.77 

15.  Geodesic16 10 3 16 27218.4 24.67 

16.  Geodesic17 10 4 8 28665.6 25.98 

17.  Geodesic18 10 4 12 33216.8 30.11 

18.  Geodesic19 10 4 16 35942.3 32.58 

19.  Geodesic20 8 2 8 14541 13.18 

20.  Geodesic21 8 2 12 16939.6 15.35 

21.  Geodesic22 8 2 16 18383.6 16.66 

22.  Geodesic23 8 3 8 21433.5 19.43 

23.  Geodesic24 8 3 12 24809.7 22.49 

24.  Geodesic25 8 3 16 26905 24.39 

25.  Geodesic26 8 4 8 28318.2 25.67 

26.  Geodesic27 8 4 12 32827.9 29.75 

27.  Geodesic28 8 4 16 35487.3 32.16 

28.  Geodesic29 6 2 8 18981 17.20 

29.  Geodesic30 6 2 12 22074.8 20.01 

30.  Geodesic31 6 2 16 23900.3 21.66 

31.  Geodesic32 6 3 8 27923.3 25.31 

32.  Geodesic33 6 3 12 32373 29.34 

33.  Geodesic34 6 3 16 34982.5 31.71 

34.  Geodesic35 6 4 8 36888.2 33.43 

35.  Geodesic36 6 4 12 42736.3 38.73 

36.  Geodesic37 6 4 16 46186.2 41.86 

 

The above can be explained by the sign of the forces in the members. When the loading is entirely 

pressure or only at apex, all the ring members are under tension till the plot resumes positive trend 

after the snap-through (while radial members are under compression which buckle causing the first 

limit point). With half pressure-half uplift loading, some of the ring members are already in 

compression before the resumption of the positive trend. The ultimate failure, is thus predicted at 
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this point, since member buckling has occurred in both ring and radial members simultaneously. 

This could have implications on member selection for ring and radial members when designing 

for such a load distribution, which is commonly encountered for wind pressures on the surfaces of 

dome. 
 

Table 2: Properties of Lamella type domes (units: kN, m) 

S.No Dome model Span/Rise Rings 
Members at 

apex 
AE/L EI/L 

1.  Lamella1 5 2 8 37885.1 34.34 

2.  Lamella2 5 2 8 32076.7 29.07 

3.  Lamella3 5 2 12 44387.3 40.23 

4.  Lamella4 6 2 10 37005.0 33.54 

5.  Lamella5 4 2 14 53717.3 48.69 

6.  Lamella6 10 3 8 37005.4 33.54 

7.  Lamella7 8 3 12 19055.5 17.27 

8.  Lamella8 8 3 16 22087.2 20.02 

9.  Lamella9 8 4 8 26705.6 24.21 

10.  Lamella10 8 4 12 35135.5 31.85 

11.  Lamella11 10 2 8 12339.3 11.18 

12.  Lamella12 10 2 12 14724.3 13.35 

13.  Lamella13 10 2 16 16271 14.75 

14.  Lamella14 10 3 8 15353.2 13.92 

15.  Lamella15 10 3 12 19006.8 17.23 

16.  Lamella16 10 3 16 21515.7 19.50 

17.  Lamella17 10 4 8 17391.4 15.76 

18.  Lamella18 10 4 12 22250 20.17 

19.  Lamella19 10 4 16 25720.2 23.31 

20.  Lamella20 8 2 8 12231.7 11.09 

21.  Lamella21 8 2 12 14601.6 13.23 

22.  Lamella22 8 2 16 16130.6 14.62 

23.  Lamella23 8 3 8 15154.1 13.74 

24.  Lamella24 8 3 12 18840.7 17.08 

25.  Lamella25 8 3 16 21400.8 19.40 

26.  Lamella29 6 2 8 16020 14.52 

27.  Lamella30 6 2 12 19071.4 17.29 

28.  Lamella31 6 2 16 21015.7 19.05 

29.  Lamella32 6 3 8 19925.4 18.06 

30.  Lamella33 6 3 12 24613.7 22.31 

31.  Lamella34 6 3 16 27923.3 25.31 

 

The results of all examples are elaborated in Table 3 and 4 for limit and ultimate loads and apex 

displacement corresponding to the limit load, for all the three loading patterns. For reasons 

mentioned earlier, ultimate load is not obtained for the case of half pressure-half uplift loading and 

hence are not shown in the table. For Lamella domes having 4 rings, the members do not yield or 

buckle before the first limit point, and hence the limit points from elastic and inelastic analyses 

coincide. The values of limit loads in the tables show clearly the conservativeness present in the 

practice of limit load determination with apex loads only. This is marginally lower for the results 

of inelastic analysis. The ratio of the limit load predictions is briefly summarized in Table 5. The 

key point of interest is the near invariance of this ratio for a dome of specific member properties 

and load distribution pattern. Since the limit loads are the lowest for apex only loading, it is 

expected that if a greater share of the load is distributed to the rings (from the current 60%), this 
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ratio would further increase, and vice versa. This has direct implications in design since the apex 

loading habit in finding limit loads would lead to significant overdesigns. 

 

 

 

Figure 6: Elastic post-buckling curves for Geodesic 19 dome 

 

 

 

Figure 7: Inelastic post-buckling curves for Geodesic 19 dome 
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Table 3: Limit and Ultimate loads and apex displacements for selected Geodesic domes (units: kN, m) 

 Half Pressure, Half Uplift Pressure Loading Apex Loading 

 Elastic Inelastic Elastic Inelastic Elastic Inelastic 

Dome1 Plim
2,3 𝛿lim Plim 𝛿lim Plim 𝛿lim Plim 𝛿lim Pult

2 𝛿ult Plim 𝛿lim Plim 𝛿lim Pult 𝛿ult 

G11 6.063 0.786 0.110 0.056 6.994 0.758 0.112 0.010 0.085 4.475 2.310 0.785 0.045 0.009 0.047 4.484 

G12 7.246 0.745 0.154 0.102 8.950 0.681 0.168 0.010 0.164 4.543 2.776 0.746 0.067 0.008 0.092 4.570 

G13 8.029 0.722 0.204 0.219 10.411 0.641 0.224 0.010 0.293 4.632 3.089 0.717 0.089 0.014 0.166 4.686 

G14 1.767 0.345 0.137 0.060 1.891 0.348 0.148 0.020 0.122 2.007 0.690 0.360 0.059 0.019 0.058 2.009 

G15 2.128 0.336 0.205 0.070 2.344 0.327 0.222 0.019 0.279 2.036 0.835 0.341 0.089 0.018 0.133 2.038 

G16 2.363 0.326 0.274 0.062 2.653 0.310 0.295 0.018 0.495 2.067 0.929 0.327 0.117 0.023 0.217 2.056 

G17 0.710 0.199 0.164 0.053 0.741 0.194 0.177 0.030 0.180 1.152 0.279 0.200 0.071 0.029 0.081 1.150 

G18 0.856 0.191 0.246 0.048 0.908 0.173 0.265 0.028 0.409 1.207 0.338 0.195 0.104 0.036 0.185 1.204 

G19 0.951 0.187 0.325 0.045 1.024 0.177 0.348 0.035 0.754 1.247 0.376 0.188 0.137 0.041 0.335 1.242 

G20 11.61 0.98 0.13 0.06 13.35 0.93 0.14 0.01 - - 4.43 0.99 0.05 0.01 - - 

G21 13.89 0.93 0.19 0.12 17.06 0.87 0.20 0.01 - - 5.32 0.95 0.08 0.01 - - 

G22 15.38 0.90 0.25 0.26 19.80 0.81 0.27 0.01 - - 5.92 0.92 0.11 0.01 - - 

G23 3.33 0.45 0.17 0.07 3.56 0.44 0.18 0.02 0.15 2.50 1.30 0.45 0.07 0.02 0.07 2.50 

G24 4.01 0.43 0.25 0.08 4.41 0.41 0.27 0.02 0.33 2.53 1.57 0.43 0.11 0.02 0.16 2.53 

G25 4.45 0.42 0.33 0.06 4.99 0.39 0.36 0.02 0.59 2.55 1.75 0.42 0.14 0.02 0.28 2.56 

G26 1.41 0.26 0.20 0.04 1.47 0.25 0.22 0.02 0.22 1.44 0.55 0.26 0.09 0.02 0.10 1.44 

G27 1.69 0.24 0.30 0.05 1.80 0.24 0.32 0.03 0.48 1.48 0.67 0.24 0.13 0.03 0.22 1.48 

G28 1.88 0.23 0.40 0.04 2.03 0.23 0.43 0.02 0.89 1.52 0.75 0.24 0.17 0.03 0.40 1.52 

G29 26.21 0.99 0.26 0.03 29.911 0.976 0.262 0.010 0.237 5.659 10.015 1.023 0.105 0.009 0.132 5.675 

G30 31.35 0.96 0.38 0.14 38.076 0.891 0.393 0.010 0.470 5.734 12.040 0.967 0.157 0.008 0.259 5.757 

G31 34.73 0.91 0.49 0.23 44.049 0.816 0.525 0.010 0.809 5.770 13.390 0.938 0.210 0.007 0.450 5.825 

G32 7.61 0.46 0.35 0.09 8.123 0.454 0.370 0.010 0.341 2.544 2.973 0.463 0.147 0.019 0.160 2.545 

G33 9.18 0.43 0.52 0.08 10.077 0.417 0.552 0.019 0.755 2.562 3.599 0.436 0.221 0.017 0.361 2.582 

G34 10.18 0.42 0.69 0.05 11.389 0.401 0.736 0.018 1.357 2.591 4.004 0.421 0.293 0.021 0.644 2.591 

G35 3.19 0.25 0.46 0.03 3.334 0.261 0.497 0.021 0.568 2.032 1.257 0.257 0.197 0.019 0.217 1.461 

G36 3.85 0.25 0.70 0.04 4.096 0.245 0.738 0.028 1.087 1.590 1.520 0.247 0.295 0.027 0.444 1.485 

G37 4.27 0.24 0.92 0.04 4.601 0.235 0.982 0.027 1.990 1.549 1.690 0.243 0.389 0.032 0.916 1.677 
1 For convenience, G denotes Geodesic and L denotes Lamella, 2 The subscript lim denotes limit and subscript ult denotes ultimate, 3 values are load factors and 

not total loads 
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Table 4: Limit and Ultimate loads and apex displacements for selected Lamella domes (units: kN, m) 

 Half Pressure, Half Uplift Pressure Loading Apex Loading 

 Elastic Inelastic Elastic Inelastic Elastic Inelastic 
1Dome 2,3Plim 𝛿lim Plim 𝛿lim Plim 𝛿lim Plim 𝛿lim 2Pult 𝛿ult Plim 𝛿lim Plim 𝛿lim Pult 𝛿ult 

L11 5.933 0.797 0.081 0.182 6.754 0.774 0.094 0.070 0.077 4.534 2.267 0.798 0.037 0.067 0.042 0.542 

L12 7.183 0.738 0.125 0.257 8.801 0.702 0.141 0.060 0.165 4.628 2.754 0.750 0.056 0.076 0.094 4.647 

L13 7.999 0.724 0.164 0.198 10.311 0.648 0.185 0.093 - - 3.076 0.723 0.073 0.092 - - 

L14 1.732 0.376 0.115 0.153 1.803 0.382 0.124 0.167 0.154 2.240 0.683 0.381 0.049 0.169 0.070 2.240 

L15 2.077 0.353 0.164 0.198 2.230 0.344 0.178 0.181 0.346 2.433 0.830 0.354 0.069 0.202 0.162 2.452 

L16 2.316 0.332 0.205 0.220 2.516 0.322 0.225 0.206 0.654 2.708 0.926 0.339 0.085 0.232 0.322 2.962 

L17 0.692 0.214 0.069 0.214 0.710 0.220 0.071 0.220 0.235 1.542 0.277 0.216 0.028 0.216 0.110 1.557 

L18 0.841 0.202 0.084 0.202 0.871 0.198 0.087 0.198 0.572 1.897 0.337 0.195 0.034 0.195 0.249 2.182 

L19 0.938 0.185 0.094 0.185 0.976 0.190 0.098 0.190 0.668 1.950 0.375 0.188 0.038 0.188 0.290 1.957 

L20 10.926 1.020 0.108 0.212 12.896 0.997 0.114 0.050 0.094 5.650 4.347 1.024 0.046 0.057 0.050 5.655 

L21 13.769 0.946 0.152 0.266 16.779 0.894 0.172 0.049 0.200 5.726 5.283 0.963 0.068 0.059 0.112 5.742 

L22 15.310 0.915 0.201 0.180 19.610 0.827 0.229 0.049 0.371 5.856 5.896 0.911 0.090 0.066 0.206 5.867 

L23 3.266 0.472 0.148 0.146 3.398 0.480 0.160 0.128 0.180 2.693 1.289 0.469 0.063 0.129 0.081 2.694 

L24 3.915 0.441 0.217 0.154 4.200 0.427 0.235 0.135 0.430 2.961 1.565 0.435 0.092 0.148 0.196 2.946 

L25 4.366 0.419 0.281 0.180 4.736 0.407 0.304 0.158 0.767 3.150 1.746 0.422 0.119 0.174 0.350 3.138 

L29 24.731 1.043 0.238 0.213 28.925 1.021 0.253 0.049 0.213 5.712 9.843 1.029 0.101 0.057 0.113 5.714 

L30 31.096 0.955 0.340 0.245 37.475 0.915 0.379 0.049 0.478 5.799 11.951 0.983 0.151 0.058 0.260 5.808 

L31 34.582 0.918 0.448 0.177 43.638 0.851 0.506 0.048 0.830 5.908 13.335 0.927 0.200 0.065 0.458 5.920 

L32 7.460 0.481 0.331 0.148 7.755 0.488 0.355 0.127 0.410 2.735 2.944 0.477 0.141 0.129 0.184 2.736 

L33 8.957 0.447 0.485 0.157 9.597 0.444 0.522 0.136 0.903 2.895 3.581 0.452 0.205 0.147 0.417 2.907 

L34 9.908 0.475 0.627 0.187 10.817 0.415 0.678 0.154 1.715 3.158 3.992 0.428 0.265 0.173 0.780 3.219 
1 For convenience, G denotes Geodesic and L denotes Lamella, 2 The subscript lim denotes limit and subscript ult denotes ultimate, 3 values are load factors and 

not total loads 

 
Table 5: Ratio of limit and ultimate load predictions of distributed loading to predictions of apex loading  

 Geodesic Type Lamella Type 

Ratio Maximum Minimum Average Maximum Minimum Average 

Limit load: Pressure loading to half pressure-half uplift 1.30 1.04 1.13 1.29 1.03 1.14 

Limit load: Pressure loading to apex loading 3.37 2.65 2.89 3.35 2.63 2.91 

Ultimate load: Pressure loading to apex loading 2.54 2.49 2.50 2.63 2.5 2.54 

 

 



 

3.4 Influence of number of rings 

The number of rings appear to have contradictory effects in elastic analysis and inelastic analysis. 

The limit load undergoes clear reductions with greater number of rings in case of elastic analysis. 

There is however steady increase in limit loads with increasing number of rings in the case of 

inelastic analysis. The reason for the latter is obvious given that greater number of rings leads to 

more members in the dome, more redistribution, and consequently lower member forces. This 

delays the load factor at which member buckling or yielding occurs, thus increasing the limit load. 

 

For the adverse effect of rings on elastic analysis, the explanation is based on a ‘zonal’ effect. With 

a fixed span/rise ratio, when the number of rings is greater, the zone undergoing snap-through is 

closer to the top and hence shallower, causing a reduction in the limit loads. These points are 

illustrated in Figs 8-10. Fig 8 in particular shows that it is indeed the member forces of the members 

confined in this zone that causes the occurrence of the limit point. Similar trends according to the 

number of rings is seen also with inelastic analysis. 

 

 
Figure 8: Snap-through occurring in the confined part of the uppermost ring 

 

 
Figure 8: Critical members of a geodesic type dome under pressure loading 

 

Figs 9-10 shows the effect of number of rings for rise-span ratio 10, for varying number of 

members at the apex. The figures are shown for pressure loading but the same trend was observed 

for all loading patterns.  
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Figure 9: Variation of limit loads with number of rings (Elastic analysis) 

 

 

Figure 10: Variation of limit loads with number of rings (Inelastic analysis) 

 

However, the percentage increase in the limit load is practically constant as the number of members 

is increased from 8 to 12 and from 12 to 16. This is true irrespective of the span-rise ratio, the 

number of rings and even the loading distribution pattern. Typical percentage of increase is listed 

in Table 6. Clearly, in inelastic analysis the percentage increase in the limit loads is almost equal 

to the percentage increase in the number of members. However, for elastic analysis, in which the 

limit point is not caused by member effects (buckling or yielding) the percentage increase is not 

correlatable to the number of members. It is to be remembered however that, the limit loads from 

inelastic analysis would be definitely much lower than that from elastic analysis, for a given 

number of rings. 
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Table 6: Effect of number of members at apex on limit loads 

 Geodesic Lamella 

Members at apex increase 

from 

Half 

pressure – 

half uplift 

Pressure 

Loading 

Apex 

Loading 

Half 

pressure – 

half uplift 

Pressure 

Loading 

Apex 

Loading 

Elastic Analysis: 8 to 12 20% 25% 20% 23% 25% 22% 

Elastic Analysis: 12 to 16 11% 13% 11% 11% 14% 12% 

Inelastic Analysis: 8 to 12 49% 49% 50% 45% 50% 49% 

Inelastic Analysis: 12 to 16 32% 33% 32% 32% 32% 33% 

 

4. Comparison of results with approximate closed-form expression – Wright’s formula and 

generation of predictor equation 

The Wrights formula, given by Eq 8, is compared with the limit load predictions obtained by the 

procedure in this study. It is to be noted that Wright’s formula given the critical loads 𝑞𝑐𝑟 in terms 

of pressures (kN/m2) and therefore the limit loads obtained in this study are divided by the plan 

area of the dome in order to make a comparison. 

 
𝐴𝐸𝑙

12𝑅3
 < 𝑞𝑐𝑟 <

𝐴𝐸𝑙

6𝑅3
  (8) 

 

 

Figure 11: Scatter of ratio of limit loads (study) to Wright’s formula limit loads 

 

In the formula 𝑹 is the spherical radius of the dome. Fig 9 shows that the deviation with Wright’s 

formula is higher for domes with greater number of rings with a specific number of apex members. 

The formula is also seen to gain accuracy as the number of apex members increases. The ratio of 

the obtained in the study to that given by the lower limit of Wright’s formula is about 0.7 for 16 

members at the apex and two rings. Given that this ratio is itself with respect to the formula’s lower 

bound, it can be stated that the Wright’s formula is unconservative for predictions of the elastic 

limit load. Most closed form expressions do not relate to member effects such as buckling or 

yielding in their formulae and hence similar comparisons cannot be made for inelastic limit loads. 
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To address this gap in unavailability of prediction expressions, it was sought to carry out a 

regression on the generated results of both types of domes. Since the two types of domes differ in 

geometry, they were considered separately for the regression. Initially nonlinear regression of the 

form shown in Eq. 9  (Dara, 2019) was attempted but the predictions were extremely 

unsatisfactory. Hence, as an preliminary step, linear regression was performed for prediction 

equations for limit loads for all 3 loading cases and ultimate loads for pressure and apex only 

loading cases. The input parameters chosen were the span-rise ratio, number of rings, number of 

members at the apex and the average length (in terms of EI/Lavg). The axial rigidity was omitted, 

since the ultimate loads in most examples were reached by member buckling rather than yielding. 

Table 7 below shows the regression coefficients for the parameters and the R2 value for each 

equation generated. For the equations generated for ultimate loads, span-rise ratio was omitted 

since the P-value was high (>0.5) and the regression was performed again to get the coefficients 

in Table 7. 

 
Table 7: Coefficients of regression for prediction of limit and ultimate loads 

Dome 

Geometry 
Case1 

Regression coefficient for parameter 

Span/rise 
No. of 

rings 

No. of 

members 

at apex 

𝐸𝐼

𝐿𝑎𝑣𝑔
2

 Intercept 
Adjusted 

R2 

Geodesic 

Limit load: Half 

pressure-half uplift 
-3.485 -12.747 0.738 13.471 55.744 0.9704 

Limit load: Pressure -3.651 -13.240 0.856 14.228 57.379 0.9674 

Limit load: Apex load -1.477 -5.256 0.344 5.623 23.066 0.9668 

Ultimate load: Pressure - -31.735 3.039 34.124 22.192 0.9190 

Ultimate load: Apex load - -16.285 1.658 15.272 14.048 0.8816 

Lamella 

Limit load: Half 

pressure-half uplift 
-4.193 -8.074 -0.373 21.151 58.262 0.8585 

Limit load: Pressure -4.591 -9.084 -0.262 22.344 63.627 0.8543 

Limit load: Apex load -1.852 -3.500 -0.104 8.632 25.531 0.8574 

Ultimate load: Pressure - -16.386 0.279 74.062 0.577 0.8853 

Ultimate load: Apex load - -9.332 0.416 33.232 3.741 0.8778 
1 All output loads fitted in kN for total of all loads acting on the dome 

 

It is seen that the coefficients obtained are satisfactory with adjusted R2 values greater than 0.95 

for the Geodesic Type domes. The usage of the same parameters however is unsatisfactory for 

Lamella type domes having adjusted R2 values lesser than 0.9. A few of the Lamella domes did 

not undergo member buckling even while performing inelastic analysis and this could be cited as 

a possible reason for the relatively poor performance of the regression with same parameters.  

 

5. Conclusions 

This study demonstrates the post-buckling behavior of single layer reticulated shells with loads 

acting on the ring nodes rather than just the apex. The basis of the nonlinear formulation, the 

corotated-updated Lagrangian formulation was summarized, along with the methods for 

incorporation of member inelasticity and buckling. A total of 67 domes – in Geodesic and Lamella 

type geometries were run through elastic and inelastic post-buckling analyses for three loading 

distributions namely apex loading, distributed pressure (downward) loading and half pressure-half 

uplift loading. The limit loads, ultimate loads and corresponding displacements obtained through 

the analyses give some valuable information on the effect of distributed loading on the 

postbuckling behavior. The results were also compared with the popular Wright’s formula for 
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assessing the suitability of the expression. Some of the conclusions that can be stated based on the 

results of the study are listed below: 

a. The distribution of load on the dome surface enhances the global buckling capacity (i.e 

raises the limit load) of single layer domes. This is true with both elastic and inelastic 

analyses. While elastic limit load predictions with distributed loading are upto 2.9 times 

the elastic limit loads with apex loading, for inelastic limit loads, this ratio is about 2.5 

b. The ratios above are dependent on the proportion of the total loads on the ring. The lowest 

loads are when the dome is loaded at only the apex, and when the load is distributed 

perfectly on all nodes, the ratio is expected to be the highest. 

c. Domes with more number of rings are susceptible to snap-through as long as the individual 

members members are within their yield and buckling limits. But in the scenario of 

members exceeding these limits (inelastic postbuckling analysis of the dome), the more the 

rings, the higher is the limit load of the structure. This is due to a greater number of 

members in the structure, which eases the forces carried by each member, thus delaying 

the limit point. Thus the number of rings is an important parameter in design, which should 

be taken into account while simultaneously keeping elastic and inelastic limit loads above 

the required values. 

d. The lower bound of the closed-form Wright’s formula for elastic limit loads (in terms of 

pressure) is unconservative for single layer domes. The unconservativeness is greater for 

higher number of rings and members at the apex. 

e. Linear regression was performed for Geodesic and Lamella domes in the search of a 

prediction equation for the limit and ultimate loads with consideration of inelastic behavior.  

While the expression is satisfactory for Geodesic domes within the range of values in this 

study, the same confidence is not obtained for Lamella type domes. However, this serves 

as a starting point towards formulating more acceptable prediction equations for the limit 

and ultimate loads of single layer domes.  

 

This study can be extended further to include more dome geometries, load distributions and dome 

dimensions. Additionally, the effect of joint flexibility, which is reported in literature to have 

profound bearing on limit loads, can also be taken into consideration. 
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