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Abstract 

Multi-sided steel tubular sections are commonly used in many structures such as light posts, road 

signpost, transmission and telecommunication towers, etc. These sections are generally subjected 

to axial compression, pure bending, combined bending and compression or torsion.  From the 

design point of view, it is essential to make sure that these thin-walled sections do not buckle 

locally before reaching their capacities. Unlike Canadian bridge design standard (CSA S6-14), 

current AASHTO standard for structural supports for highway signs, luminaires, and traffic signals 

provides slenderness limits to check for local buckling of Octagonal (8-sides), Dodecagonal (12-

sides) and Hexadecagonal (16-sides) steel tube sections when they are subjected to axial 

compression and bending. Although many structures now use these multi-sided sections, very 

limited study has been conducted to evaluate slenderness limits of these thin-walled sections. This 

paper presents a finite element (FE) analysis based study of local buckling of multi-sided steel 

tubular sections. A nonlinear finite element model is developed for this study. The finite element 

model is validated against experimental results from stub column tests of 8, 12, and 16-sided cross-

sections. The validated FE model is then used to analyze a series of multi-sided steel tubular 

sections subjected to axial compression, pure bending, and torsion. Results from FE analyses are 

used to evaluate the slenderness limits specified in different standards (AASHTO, ASCE, and 

Eurocode). FE analyses show that the compact limit in the AASHTO standard might need to be 

revised, whereas the non-compact limit is more relaxing for sections under pure bending. 

Moreover, FE analyses also indicate that the non-compact limit of the Hexadecagonal section can 

be used for the other two sections under axial compression.  

 

 

1. Introduction 

Multi-sided tube sections are hollow sections having a polygonal cross-section. These thin-walled 

sections are used in many structures like overhead road signpost, light post, transmission pole, etc. 

These structures are generally subjected to axial compression, pure bending, combined bending 

and compression or torsion. These thin-walled sections tend to buckle locally if proper width-

thickness ratios are not maintained. Local buckling of multi-sided tube section must be prevented 

until the member can reach its capacity. This will ensure the adequate service life of the structure.  
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Elastic buckling stress of a single plate can be obtained by using Timoshenko’s equation 

(Timoshenko, 1961). Multi-sided tubular sections can be considered as an assembly of restrained 

plates to determine the elastic critical buckling stress using the familiar equation of Timoshenko, 

as shown in Eq. 1: 

 

 𝜎𝑐𝑟 =  
𝑘𝜋2 𝐸

12(1−𝜈2)(
𝑏

𝑡
)

2 (1) 

 

where k is the plate buckling coefficient determined by theoretical critical-load analysis and is a 

function of plate geometry and boundary conditions; E, ν, b and t are the modulus of elasticity, 

poison’s ratio, plate width, and plate thickness, respectively. For simply supported plate, a k value 

of 4.0 can be used. Several studies have been undertaken to find values of k for different geometry, 

loading, and support conditions. 

 

There have been some studies on behavior of multi-sided steel tube sections under different 

loading conditions. Wittrick et al. (1968) developed a “Stability Function” based theoretical 

method to develop criteria for local buckling analyses of polygonal tubular sections subjected to 

combined compression and torsion and reported the critical combination of compression and 

torsion for three and four-sided polygonal tube sections. Aoki et al. (1991) experimentally 

investigated the local buckling behavior of polygonal steel sections of four to eight sides under 

compression. They have observed that strength of specimen is closely related to plate width-

thickness parameter (R), as defined by Eq. 2: 

 

  𝑅 = √
𝐹𝑦

𝜎𝑐𝑟
 (2) 

 

where 𝐹𝑦  is the yield stress, and 𝜎𝑐𝑟  can be obtained from Eq.1.  

 

Teng et al. (1999) studied the elastic local buckling behavior of columns having polygonal cross-

sections (4- to 8- sided) under uniform axial compression or bending by using the finite strip 

method and reported plate buckling coefficients (k-values) for different slenderness ratios. Godat 

et al. (2012) conducted an experimental study to investigate elastoplastic local buckling behavior 

of thin-walled tubes having polygonal cross-sections (i.e., 8-, 12-, and 16-sided) under concentric 

compression. Critical local buckling stress has been observed for different plate width-thickness 

ratios. Gonçalves et al. (2013) investigated the elastic buckling behavior of the tubular section 

having regular polygonal cross-section under uniform compression by using specialized 

Generalized Beam Theory (GBT). For pure local buckling, it was found that minimum critical 

buckling stress of even-sided sections can be predicted by using a buckling coefficient (k) of 4.0. 

For the odd-sided sections (i.e., 3-, 5-, and 7- sided), k-values were reported to be higher than 4.0. 

Bräutigam et al. (2017) experimentally and numerically investigated the bending behavior of 

sixteen (16) sided polygonal tubular steel sections under pure bending and combined bending and 

torsion. Their study indicated that bending moment capacity for compact section can be more than 

the elastic bending moment capacity (yield moment). It was also reported that it might not be 

appropriate to use the full plastic moment capacity (Mp) of 16-sided polygonal tubular section. 
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Current AASHTO (2015) provides nominal strengths of multi-sided tubular sections subjected to 

compression, tension, bending, shear, and combined forces. ASCE (ASCE/SEI-48-11, 2011) 

provides design equations for local buckling capacities of eight, twelve, and sixteen-sided 

polygonal steel sections of the transmission line. Eurocode 3 (EN 1-1, 2005, EN 1-3, 2006, EN 1-

5, 2006) has design equation for plate elements. In this study, a multi-sided steel tubular section 

has been considered as a collection of individual longitudinal plate strips to find the resistance 

using Eurocode 3. AASHTO also provides width-thickness limits for eight, twelve, and sixteen-

sided polygonal steel sections. While AASHTO recommends same width-thickness limit for all 

the three sections when they are compact, the requirements are different for non-compact sections. 

However, very limited study has been conducted to evaluate these limits. The objective of this 

study is to observe the local buckling behavior of the multi-sided steel tubular section subjected to 

axial compression, pure bending, and torsion by developing Finite Element Models (FEM). FE 

analysis results have been compared with the existing codes. Three different types of geometry, 

eight (8), twelve (12), and sixteen (16) sided polygonal sections, are considered. 

 

2. Finite Element Modeling 

A nonlinear finite element model is developed using ABAQUS software. Both material and 

geometric nonlinearities have been incorporated in the model. The following subsections describe 

the details of FE model development. 

 

2.1 Elements and Properties 

Thin-walled members having three different polygonal cross-sections (i.e., Octagonal, 

Dodecagonal, and Hexadecagonal), as shown in Fig. 1, have been modeled using 4-node shell 

elements with reduced integration (S4R from ABAQUS element library) (ABAQUS, 2014). 

Moreover, mesh sensitivity analysis has been conducted to get a suitable mesh size for each 

polygonal cross-section. 

 

2.2 Boundary Conditions  

A simply supported boundary condition was adopted for analyses of multi-sided tube sections 

subjected to bending and pure compression. For the simply supported boundary condition:  

 

i. Right end was restrained against X, Y and Z-axis deflection (U1= U2= U3= 0) and rotation 

about Z-axis (UR3=0). Rotation about X and Y-axis was kept unrestrained. 

ii. The left end was restrained against X and Y-axis deflection (U1= U2= 0) and rotation about 

Z-axis (UR3=0). Rotation about X and Y-axis and deflection in Z-axis were kept 

unrestrained. 

 

 
(a) Octagonal section 

 
(b) Dodecagonal section 

 
(c) Hexadecagonal  section 

 

Figure 1: Selected steel multi-sided tube sections 
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For pure torsional loading, one end of the member had fixed boundary condition and the remaining 

end was free.  At the fixed end, deflection in X, Y, and Z-axis (U1= U2= U3= 0) and rotation about 

X, Y, and Z-axis (UR1=UR2=UR3=0) were restrained. However, at the free end, deflection in X 

and Y-axis (U1= U2= 0) were kept restrained. 

 

2.3 Material properties 

Bilinear elastoplastic stress versus strain curve has been used for all the models.  A strain-

hardening of 2% of modulus of elasticity (E) of steel has been used. Modulus of elasticity (E) of 

200 GPa, Yield stress (Fy) of 345 MPa, and poison’s (ν) ratio of 0.3 have been considered for all 

the models. 

 

2.4 Analysis Type 

Both elastic buckling analysis and nonlinear static analysis were performed to estimate the critical 

buckling load, flexural capacity, and torsional capacity of the multi-sided tube sections. First, an 

eigenvalue analysis was performed using the linear perturbation buckling analysis. From the 

eigenvalue analysis, eigenvalues of corresponding eigenmodes were extracted. In this study, three 

eigenvalues for each member were obtained. 

 

Finally, the static RIKS method (ABAQUS, 2014) was used to conduct the nonlinear buckling 

analysis. RIKS method is suitable for predicting buckling, post-buckling, or collapse of certain 

types of structures. RIKS method is based on the Arc-length method and a form of Newton-

Raphson iteration method. RIKS method provides solutions for load and displacement 

simultaneously. From the nonlinear buckling analysis, the maximum Load Proportionality Factor 

(LPF) was extracted to estimate the critical buckling load. All the finite element results presented 

in this paper are from nonlinear static analyses.  

 

2.5 Load Application 

In this study, three different loading conditions were considered: axial compression, pure bending, 

and pure torsion. Axial load was applied at the top end of the member through a reference point, 

as shown in Fig. 2. The load was applied in the negative Z-direction to create a compressive load 

to the hollow column. For pure bending, a constant bending moment along the length of the 

member was applied about X-axis to the member. The bending moment was applied at the two 

reference points at each end of the multi-sided tube. For the members under pure torsion, a moment 

was applied at the free end about Z-axis.  

 

 
 

Figure 2: Reference point shown for Octagonal multi-sided tube section 
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2.6 Geometric Imperfection 

Geometric imperfection is required to trigger buckling in the thin plates when doing FE analysis. 

An imperfection value of 10% of the thickness of the specimen was used for all the models. Since 

lowest eigenvalue refers to the load which initiates the buckling of a structure, geometric 

imperfection has been applied to the buckling mode obtained from the lowest eigenvalue from 

eigenvalue analysis (Trahair, 1993). 

 

2.7 Residual Stress 

Since welding induces residual stress into the member, residual stress needs to be considered. 

However, there exists minimal research on residual stress of polygonal hollow cross-sections. Fang 

et al. (2018) have studied residual stresses in octagonal hollow sections for different fabrication 

routes. In this study, residual stress pattern and values recommended by Fang et al. (2018) for 

octagonal hollow sections have been used. Residual stress has been incorporated in the finite 

element analysis as initial stress. 

 

3. Validation of Finite Element Model 

The finite element (FE) model is validated against the experiment conducted by Godat et al. 

(2011). Six stub columns of three different cross-sections (i.e., Octagonal, Dodecagonal, and 

Hexadecagonal) were tested under concentric compression. For each cross-sectional profile, two 

different plate width-thickness ratios were considered. Columns were simply supported with 780 

mm length. To simulate the experimental results, all the geometric and mechanical properties of 

specimens in FEM were kept same as in the experiment. To apply the compressive load, a top plate 

was modeled with 10-node tetrahedral element C3D10 (ABAQUS, 2014). Both linear and 

nonlinear buckling analyses have been performed to estimate the critical buckling load. 

Imperfection values that were measured in the experimental results have been introduced in the 

first mode of buckling. Table 1 shows number of faces (n), plate thickness (t), flat width of plate 

(w), tensile yield stress (Fy), modulus of elasticity (E), yield strain (εy), ultimate strain (εu), critical 

buckling loads from finite element models (PFEM) and experiment (PExperiment) for the validated 

models. It is observed from Table 1 that the developed FE model provides excellent predictions of 

the local buckling capacities of multi-sided sections. As presented in Table 1, maximum difference 

between tests and FE analyses is about 7%. 

 
Table 1: Geometric and Mechanical Properties of Validated Specimen 

Specimen n t (mm) w 

(mm) 

Fy 

(Mpa) 

E 

(GPa) 

εy X 

10^-3 

εu 

(%) 

PFEM (KN)  PExperiment 

(KN) 

% 

Difference 

OCT-1-A 8 1.897 95 279 200 1.4 26 313.1 327 4.24 

OCT-4-A 8 1.367 75 265 199 1.3 27 186.6 198 5.75 

DODE-1-A 12 1.367 76 273 206 1.3 24 301.5 325 7.22 

DODE-2-A 12 1.897 75 305 218 1.4 25 482.1 515 6.38 

HEXA-1-A 16 1.519 52 277 199 1.4 26 319.4 317 0.75 

HEXA-4-A 16 1.897 60 302 200 1.5 26 495.6 508 2.45 

  

4. Multi-sided Tube under Different Loading Conditions  

The validated finite element (FE) model has been used to conduct more analyses to observe the 

local buckling behavior of multi-sided tube under different loading conditions (i.e., axial 

compression, pure bending, and torsion) for various width-thickness ratios (b/t). 
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For all the FE models, element width (b), wall thickness (t), and inside bend radius (rb) have been 

chosen according to AASHTO (AASHTO, 2015). AASHTO provides equation to determine the 

element width (b) of multi-sided tubular sections. Furthermore, according to AASHTO, multi-

sided tube sections should have a minimum internal bend radius (rb) of five times tube wall 

thickness or 25.4 mm, whichever is larger. Element width of multi-sided tubular sections can be 

found using Eq. 3: 

 

 𝑏 = 𝑡𝑎𝑛 (
180

𝑛
) [𝐷′ − 2𝑡 − 𝑚𝑖𝑛𝑖𝑚𝑢𝑚(2𝑟𝑏 , 8𝑡)] (3) 

 

where D' is the outside distance from the flat side to the flat side of multi-sided tubes,  n is the 

number of sides of multi-sided tubes and (
180

𝑛
) is in degrees. Fig. 3 shows the cross-section of the 

Octagonal section and the geometric property definition used in this study. In Fig. 3, w and D 

indicate the flat width and mid-surface distance from flat side to flat side of multi-sided tubes 

respectively. 

 

 
Figure 3: Cross-section of Octagonal tube section 

 

Moreover, AASHTO has provided compact limit (λp), non-compact limit (λr), and maximum 

width-thickness ratio limit (λmax) for the multi-sided tubes having eight (08), twelve (12) and 

Sixteen (16) sides. Table 2 shows the limits provided by AASHTO.  

 
Table 2: Width-Thickness ratios for Multi-sided Tubular Sections according to AASHTO 

Shape Ratio λp λr λmax 

Octagonal (8 sided) b/t 
1.12√E

Fy⁄  1.53√E
Fy⁄  2.14√E

Fy⁄  

Dodecagonal (12 Sided) b/t 
1.12√E

Fy⁄  1.41√E
Fy⁄  2.14√E

Fy⁄  

Hexadecagonal (16 Sided) b/t 
1.12√E

Fy⁄  1.26√E
Fy⁄  2.14√E

Fy⁄  

 

For all the FE models, element width (b) was kept the same for each polygonal section, and wall 

thickness (t) was varied. Moreover, b/t ratios were chosen in such a way that compact, non-

compact, and slender sections could be obtained according to AASHTO. Table 3 shows the 

geometric properties of FE models. 
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Table 3: Geometric Properties of Finite Element Models 

Specimen n b 

(mm) 

rb  

(mm) 

Octagonal 8 100 Five times tube wall 

thickness or 25.4 mm, 

whichever is larger 

Dodecagonal 12 95 

Hexadecagonal 16 140 

 

Length sensitivity analysis was conducted to get suitable lengths for each polygonal cross-section 

under different loading conditions. Table 4 shows the length (L) for each polygonal section under 

various loading conditions. 

 
Table 4: Length of FE models for different Loading Conditions 

Loading Conditions L 

(mm) 

Octagonal Dodecagonal Hexadecagonal 

Axial Compression 1000 1200 2000 

Pure Bending 2000 2500 4000 

Pure Torsion 2000 2500 4000 

 

4.1 Multi-sided Tube subjected to Axial Compression 

Sixteen (16) models of each cross-section, a total of forty-eight (48) models have been analyzed 

under axial compression. Fig. 4 shows typical deformed shape of Octagonal, Dodecagonal, and 

Hexadecagonal tube sections under axial compression. Furthermore, Fig. 5 shows the critical 

buckling load obtained from FE models (PFEM) along with the width-thickness ratio (b/t) for each 

polygonal section. As expected, with an increase in slenderness ratio, local buckling capacities of 

multi-sided tube sections decrease. 

 

 

 
(a) Deformed shape of Octagonal 

section  

 
(b) Deformed shape of Dodecagonal 

section 

 
(c) Deformed shape of Dodecagonal 

section 

Figure 4: Deformed shapes of multi-sided tube sections under axial compression 
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Figure 5: Critical buckling load for multi-sided tube sections under compression 

 

 

4.2 Multi-sided Tube subjected to Pure Bending 

Twenty-six (26) models of each cross-sectional profile, a total of seventy-eight (78) models, were 

subjected to uniform bending along the lengths. These models include compact, non-compact, and 

slender sections according to AASHTO. The local buckling deformed shape of each cross-section 

has been extracted from FE models. Fig. 6 shows deformed shapes of Octagonal, Dodecagonal, 

and Hexadecagonal sections. Furthermore, Fig. 7 shows the bending moments (MFEM) obtained 

from nonlinear FE analyses. As shown in Fig. 7, for all three multi-sided tube shapes, bending 

moment capacity decreases with an increase in width-thickness ratio (b/t). 

 

 

 
(a) Deformed shape of Octagonal section 

 
(b) Deformed shape of Dodecagonal 

section 

 
(c) Deformed shape of Hexadecagonal 

section 

Figure 6: Deformed shapes of multi-sided tube sections under constant moment 
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Figure 7: Critical bending capacity for multi-sided tube sections under constant moment  

 

4.3 Multi-sided Tube subjected to Pure Torsion 

Eleven (11) models of each cross-sectional profile, a total of thirty-three (33) models, were 

subjected to uniform Torsion. These models include both compact and non-compact sections. 

Following Fig. 8 shows the deformed shapes of the Octagonal, Dodecagonal and Hexadecagonal 

sections. Comparisons between the torsional moments obtained from FE analyses (TFEM) and codes 

(TCode) are presented in the following section. 

 

 
(a) Deformed shape of Octagonal 

section 

 
(b) Deformed shape of Dodecagonal 

section 

 
(c ) Deformed shape of 

Hexadecagonal section 

Figure 8: Deformed shapes of multi-sided tube sections under uniform torsion 

 

5. Comparison with Codes 

In this sections, results from FE models when subjected to axial compression, pure bending, and 

torsion were compared with different design codes. 

 

5.1 Multi-sided Tubes under Axial Compression 

Eurocode 3 (EN 1-1, 2005, EN 1-3, 2006, EN 1-5, 2006) has design equations for plate elements. 

A multi-sided steel tubular section has been considered as a collection of individual longitudinal 

plate strips to find the resistance using Eurocode 3. The design equation of EC is based on the 

effective area concept. According to Eurocode 3, following Eqs. (4) to (6) can be used to find the 

critical compressive stress (Fcr). 

 

 𝐴𝑒𝑓𝑓 =   × 𝐴𝑔 (4) 



 10 

 

  = {
1, 𝑅 ≤ 0.5 + √(0.085 − 0.055𝜓)

𝑅−0.055(3+𝜓)

𝑅^2
≤ 1, 𝑅 > 0.5 + √(0.085 − 0.055𝜓)

 (5) 

 

 𝐹𝑐𝑟 = 𝜌 × 𝐹𝑦 (6) 

 

where Aeff is an effective area, Ag is gross area, ψ is stress ratio, and plate width-thickness parameter 

(R) has the same definition as before. 

 

According to AASHTO, nominal compressive strength (Pnc) of the multi-sided tubular column 

shall be calculated using Eq. 7 to Eq. 11 (AASHTO, 2015).  

 

 𝑃𝑛𝑐 = 𝐴𝑔𝐹𝑐𝑟 (7) 

 

when 
𝐾𝐿

𝑟
 ≤ 4.71 √

𝐸

𝑄𝐹𝑦
 ; where K and r are effective length factor and radius of gyration, 

respectively. 

 

 𝐹𝑐𝑟 = 𝑄(0.658)(
𝑄𝐹𝑦

𝐹𝑒
)𝐹𝑦 (8) 

 

when  
𝐾𝐿

𝑟
 > 4.71√

𝐸

𝑄𝐹𝑦
 

 

 𝐹𝑐𝑟 = 0.877𝐹𝑒   (9) 

 

 𝐹𝑒 =
𝜋2𝐸

(𝐾𝐿/𝑟)2 (10) 

 

If λ≤ λr, Q=1 

 

If λ>λr, Q=AEFF/Ag, where AEFF is calculated from the sum of parts using effective widths (be) 

 

 𝑏𝑒 = 1.92𝑡√
𝐸

𝑓
[1 −

0.34
𝑏

𝑡

√
𝐸

𝑓
] ≤ 𝑏 (11) 

 

where f = Fcr with Q=1. 

 

ASCE relies on the effective stress concept supported by the total cross-section. Its equations 

depend on the number of faces (ASCE/SEI-48-11, 2011). In Table 5, =6.9 and Ω= 2.62; Fy and 

Fcr are in MPa. 
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Table 5: ASCE Design Equations for Local Buckling Capacity of Multi-sided Tubular Column 

n Bend Angle 

(Degree) 

b/t Limit Fcr  

(Mpa) 

4,6 or 8 ≥45 

b/t ≤ 260Ω/√Fy Fcr = Fy 

260Ω/√Fy < b/t ≤ 351Ω/√Fy Fcr = 1.42Fy(1 − 0.00114
1

Ω
√Fy

b

t
) 

b/t > 351Ω/√Fy 
Fcr = 104980/ (

b

t
)

2

 

12 30 

b/t ≤ 240Ω/√Fy Fcr = 1.45Fy(1 − 0.00129
1

Ω
√Fy

b

t
) 

240Ω/√Fy < b/t ≤ 374Ω/√Fy Fcr = Fy 

b/t > 374Ω/√Fy 
Fcr = 104980/ (

b

t
)

2

 

16 22.5 

b/t ≤ 215Ω/√Fy Fcr = Fy 

215Ω/√Fy < b/t ≤ 412Ω/√Fy Fcr = 1.42Fy(1 − 0.00137
1

Ω
√Fy

b

t
) 

b/t > 412Ω/√Fy 
Fcr = 104980/ (

b

t
)

2

 

 

FE analysis results were compared with the compressive resistance provided by different codes, 

as shown in Fig. 9. Moreover, the ratio of compressive stress obtained from the FE model (FFEM) 

and yield stress (Fy) is plotted in the same graph along with the non-compact limit (λr) provided 

by AASHTO for different multi-sided tubes (Fig. 10). 

 

 
Figure 9: Comparison of compressive resistance from FE analysis with different codes 
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Figure 10: Comparison of compressive resistance from FE analysis with yield stress 

 

5.2 Multi-sided Tubes under Pure Bending 

For each model subjected to pure bending, plastic moment capacity (Mp) and elastic moment 

capacity (My) have been calculated. Fig. 11 shows the comparison of the bending capacity of the 

FE model (MFEM) with the plastic moment (Mp). Compact Limit (λp) of AASHTO has been shown 

in Fig. 11. 
 

 
Figure11: Comparison of bending capacity from FE analysis with plastic moment capacity 

 

Fig. 12, 13 and 14 present the comparisons of the bending capacities of the non-compact and 

slender sections with the elastic moments for Octagonal, Dodecagonal, and Hexadecagonal 

sections, respectively. In the following figures, the compact and non-compact limits of AASHTO 

are indicated. 
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Figure12: Comparison of Octagonal non-compact and slender section with yield moment 

 

 
Figure13: Comparison of Dodecagonal non-compact and slender section with yield moment 

 

 
Figure 14: Comparison of Hexadecagonal non-compact and slender section with yield moment 

 

5.3 Multi-sided Tubes under Pure Torsion 

According to AASHTO, nominal torsional strength (Tn) shall be computed using the following Eq. 

12: 

 

 𝑇𝑛 = 𝐶𝑡  𝐹𝑛𝑡 (12) 

 

where Tn is nominal torsion strength, Ct is the torsional constant, and Fnt is the nominal torsional 

stress capacity. Torsional Constant (Ct) shall be computed by using Table 6. The nominal torsional 

stress capacity (Fnt) for multi-sided tubular shapes shall be: 
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 𝐹𝑛𝑡 = 0.6 𝐹𝑦 (13) 

 
Table 6: Torsional Constant for Stress Computation 

 Octagonal Dodecagonal Hexadecagonal 

Torsional Constant (Ct) 

for stress computation 
6.63𝑅′2𝑡

𝑘𝑡

 
6.43𝑅′2𝑡

𝑘𝑡

 
6.37𝑅′2𝑡

𝑘𝑡

 

 

In Table 6, kt indicates stress concentration factor, and it should be determined using the following 

Eq.14: 

 

 𝑘𝑡 =
𝑡

𝑅′
[

𝑅′

𝑛′𝑡
−

1

2
(1+

𝑛′+1

𝑛′ )

𝑙𝑛(
𝑛′+1

𝑛′ )
] +

𝑛′𝑡

𝑅′
≥ 1 (14) 

 

where R' is radius measured to the mid-thickness of the wall and n' is the ratio of the inside-corner 

radius to wall thickness. 

 

According to ASCE, nominal torsional strength (Tn) shall be computed using the following Eq. 

15: 

 

 𝑇𝑛 ≤  𝐹𝑣
𝐽

𝑐
 (15) 

 

 𝐹𝑣 =  0.58 𝐹𝑦 (16) 

 

where Fv is shear stress permitted, c is the distance from the neutral axis to extreme fiber, and J is 

the torsional constant of cross-section. The maximum value of c/J is defined in ASCE and is shown 

in Table 7. 

 
Table 7: Maximum value of c/J according to ASCE 

 Octagonal Dodecagonal Hexadecagonal 

Max  c/J 0.603(𝐷 + 𝑡)

𝐷3 × 𝑡
 

0.622(𝐷 + 𝑡)

𝐷3 × 𝑡
 

0.628(𝐷 + 𝑡)

𝐷3 × 𝑡
 

  

For all the sections, torsional capacities have been calculated according to AASHTO and ASCE. 

Fig. 15 shows the ratio of Torsional moments obtained from FE models and two codes (i.e. 

AASHTO and ASCE) along with width-thickness ratios for Octagonal, Dodecagonal and 

Hexadecagonal sections. 
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(a) Torsional resistance of Octagonal section 

 

 
(b) Torsional resistance of Dodecagonal section 

 

 
(c) Torsional resistance of Hexadecagonal section 

Figure 15: Comparison of torsional resistance of multi-sided sections with codes 
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6. Discussion on Results 

Comparison between results from FE models under axial compression and three codes (Fig. 9) 

show that up to Plate width-thickness parameter (R) value of 0.66, FE analyses provide capacities 

either close to the three codes or higher than the codes, indicating that codes’ equations for 

compressive resistance are conservative in this range. Beyond the R-value of 0.66, ASCE provides 

three different curves for 8, 12, and 16-sided sections. Fig. 9 also shows that both AASHTO and 

Eurocode provide good predictions for the compressive resistance for multi-sided tube sections.  

In addition, for octagonal section, ASCE predictions are higher than that obtained from FE 

analyses.   

 

Moreover, Fig. 10 shows the comparison between the FE model results under axial compression 

and yield stress (Fy). Though AASHTO has provided three different non-compact limits (λr) for 

different cross-sections, all sections having a width-thickness ratio (b/t) within the non-compact 

limit of Hexadecagonal section could reach capacities close to yield stress (Fy). This means using 

the non-compact limit of the Hexadecagonal section for all three sections under axial compression 

is safer. 

 

Fig. 11 shows comparison of the bending capacities of multi-sided tube sections with the plastic 

moment capacities (Mp). AASHTO has the same compact limit (λp) for Octagonal, Dodecagonal, 

and Hexadecagonal multi-sided tube sections. However, results show that several compact sections 

(according to AASHTO) are not able to reach plastic moment capacity. The number of compact 

sections not reaching plastic moment is increasing with the increasing number of sides. It indicates 

a revision may be required for the compact limit (λp) suggested by AASHTO for sections 

subjected to pure bending. 

 

Fig. 12, 13, and 14 show the comparisons of the bending capacities of non-compact and slender 

sections with elastic moment capacities (My) for Octagonal, Dodecagonal, and Hexadecagonal 

section, respectively. AASHTO has provided three different non-compact limits (λr) for the 

Octagonal, Dodecagonal, and Hexadecagonal section. From these figures, it is observed that all 

the non-compact sections, along with some slender sections, could reach elastic moment 

capacities. It implies that AASHTO provided non-compact limits are quite relaxed for the sections 

subjected to pure bending. 

 

Fig. 15 shows the comparison between FE models subjected to torsion and codes (i.e., AASHTO 

and ASCE). FE models of Octagonal compact sections mostly have higher capacities than the 

AASHTO, and ASCE suggested torsional capacities. However, Octagonal non-compact FE 

models are not capable of reaching the capacities indicated by the two codes. For Dodecagonal 

compact sections, most of the sections could reach capacities higher than AASHTO provided 

capacities. The ratios of capacity from the FE models and ASCE are close to 1.0 for most of the 

compact Dodecagonal sections. However, the FE models of Dodecagonal compact sections near 

the non-compact limit and for all the non-compact sections have lower capacities than AASTO 

and ASCE, indicating codes are overestimating to some extent. It is also observed from Fig. 15 

that ASCE provides higher capacities for Hexadecagonal sections. Except for very few of the 

Hexadecagonal compact sections, AASHTO also provides higher torsional capacities than the FE 

analysis results. 

7. Conclusions 
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This paper presented a finite element (FE) analysis based study of local buckling of multi-sided 

steel tubular sections. A nonlinear finite element model was developed to analyze a series of multi-

sided steel tubular sections under axial compression, pure bending and pure torsion. Three different 

geometry, namely, eight, twelve and sixteen-sided polygonal sections were considered. Both linear 

buckling and nonlinear static analyses were conducted using ABAQUS. Comparison between FE 

models under axial compression results and three codes (i.e., AASHTO, Eurocode and ASCE) 

showed that, up to Plate width-thickness parameter (R) value of 0.66, FE model provided capacity 

either close to the three codes or higher than codes, indicating code equations are conservative in 

this range. AASHTO has provided compact, non-compact and maximum width-thickness limits 

for Octagonal (8-sided), Dodecagonal (12-sided), and Hexadecagonal (16-sided) tube sections. 

While the maximum width-thickness limit for compact sections is the same regardless of the 

number of sides, the non-compact limit is different for three sections. The comparison between FE 

models under axial compression and yield stress indicate that using the non-compact limit of 

Hexadecagonal section for all the three sections under axial compression is safer. Moreover, the 

comparison between the capacities of compact FE models under pure bending and plastic moment 

shows that the compact limit of AASHTO may need to be revised to a lower limit. For non-

compact sections under bending, the slenderness limits provided by AASHTO are conservative 

and can be revised to a higher value. Also, similar to compact limit, same non-compact limit can 

be used for all three shapes.  For the models subjected to torsion, except for some of the compact 

sections, both AASHTO and ASCE provide higher torsional strength than FE analysis results for 

Octagonal, Dodecagonal, and Hexadecagonal multi-sided tube sections. 
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