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Abstract 

The presence of imperfections reduces the load carrying capacities of thin cylindrical shells 

significantly. This reduction depends on the size and the shape of imperfections―the vital 

information which is difficult and expensive to obtain. All cylinders contain imperfections in one 

form or another. And thus, the prediction of their buckling capacities is a daunting task that requires 

the accurate measurement of the imperfections―a difficult and expensive adventure. Due to the 

lack of inexpensive high-fidelity prediction method, thin cylindrical shells are designed by the 

highly conservative knockdown factor approach. Consequently, the full potential of the thin 

cylindrical shells is not being exploited. Recently, a nondestructive experimental method has been 

proposed to obtain the buckling capacity of thin cylindrical shells. In this method, lateral probing 

is utilized to find the post-buckling equilibrium configuration. The load-displacement profile of 

the probing carries substantial information, which characterizes the response of the imperfect thin 

cylindrical shells. This information can be used to obtain the buckling capacities of thin cylinders. 

In this study, we computationally testify this method and assess its practical feasibility. Local 

dimple-like imperfect thin cylinders are created, and their buckling capacities are found using two 

methods: the finite element method, and the newly proposed method using lateral probing. By 

comparing these two results, the accuracy of the proposed method is evaluated. Moreover, the 

effect of the location, with respect to the dimple, of probing is also investigated. Concomitantly, 

the interaction of more than one dimple and the lateral probing is explored to understand the 

fragility of the proposed method. 

 

1. Introduction 

Thin cylindrical shells are widely used structural elements due to their efficiency, ease of 

construction, and appeal to aesthetic. However, thin cylindrical shells are highly sensitive to 

imperfections, and their load carrying capacity is reduced significantly by the presence of even 

small imperfections (Koiter 1945). As a result, the inherent benefits associated with thin shells are 

shadowed, and this has long been an obstacle for the effective use of thin shells. The issue here is 

not only that imperfections reduce the capacity, but also that the imperfections induce the 

uncertainty. This means that it is difficult to predict the capacity of practical thin cylinders because 

the reduction in the load carrying capacity depends on the prior unknown parameters: the shape 

and the size of the imperfections. To counter this uncertainty, design codes for thin cylinders are 
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highly conservative, e.g., the Eurocode Part 1-6-2007. Theoretically, it is possible to measure the 

shape and the size of imperfections, but it is a time consuming and expensive enterprise, and thus 

not a viable alternative. 

 

Recently, the evaluation of thin shells’ exact capacity, without measuring the shape and the size 

of the imperfections present, received considerable attention (Thompson 2015, Thompson et al. 

2016, Thompson et al. 2017, Hutchinson et al. 2017, Kreilos et al. 2017, Marthelot et al. 2017, 

Hutchinson et al. 2018, Fan 2019). This increased interest is attributed to the potential applications 

of thin shells in many emerging fields, e.g., flexible electronics, energy harvesting, etc. In these 

studies, a non-destructive method based on the energy barrier was proposed. The method exploits 

the energy landscape of thin cylindrical shells by probing the shells under different axial 

compression (Thompson 2015, Virot et al. 2017, Thompson et al. 2017). The load-displacement 

plots of the probe contain signatures of the energy-landscape (Virot et al. 2017), and this 

information can be utilized to estimates the capacity of cylinders. Thompson et al. (2015) have 

proposed this method, and Virot et al. (2017) have done experiments and demonstrated that there, 

indeed, is a relationship between the peak probing forces and corresponding axial compression. 

 

In all the studies mentioned in the previous paragraph, the method was proposed but was not 

implemented or validated on imperfect thin cylinders. Fan (2019) has implemented the 

aforementioned method to find the buckling capacity of imperfect thin cylinders and has reported 

promising results. However, there are some uncertainties regarding the initial axial compression, 

he called it the prescribe axial load P0, which is applied on the cylindrical shells before the probing. 

Fan (2019) has not given any clear recommendation on how to find the prescribe initial axial load 

P0—very crucial information. The capacity of imperfect cylinders is unknown, and the prescribe 

axial load P0 must be less than their capacity. And thus, we cannot rely on the uncertain definition 

of the initial prescribe axial load P0.                    

 

In this study, we clearly define the initial prescribe axial load P0, and propose an algorithm to find 

it. Once this crucial information is known, we use other steps of the proposed algorithm to find the 

axial capacity of imperfect thin cylindrical shells. The proposed algorithm is computationally 

validated on a perfect and two imperfect cylinders. For imperfect cylinders, we utilize the single 

and double dimples. Furthermore, the effect of the location of probing with respect to the 

imperfection is explored, and in the case of double dimples imperfect cylinder, the influence of 

locations of dimples is studied and enumerated.         

 

2. Description of the Proposed Algorithm  

In past studies, it was hypothesized that by probing thin cylinders under different axial 

compression (that is less than the critical axial compression) the capacity of thin shells can be 

predicted. The key element of the hypothesis is the energy barrier—the required energy for shifting 

the axially compressed thin cylinders to the post-buckling configuration from the pre-buckling 

configuration. A probe is used to shift the pre-buckling configuration to the post-buckling 

configuration, and the probing force-displacement can be exploited for the prediction of thin 

cylinders’ capacity. Based on these studies, we propose an algorithm to predict the thin cylinders’ 

capacity. The proposed algorithm has three steps: 1) finding the initial prescribe axial load P0, 2) 

probing the axially compressed cylinder for different values of axial compression, and 3) collecting 
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the maximum probing loads and predicting the buckling capacity. Fig. 1 shows the flowchart of 

the algorithm. 

 

In Step I, first the capacity of the perfect cylinder Pcr is found, then the knockdown factor k is 

evaluated. Next, the cylinder is put under the axial compression P = 0.5kPcr, and the probing force 

F is applied. If the probing force F reaches a maximum and starts reducing, the P will be the initial 

prescribe axial load P0 and Step I is completed; otherwise, the axial compression P is increased by 

5 %, and again the probing force F is applied and traced. This loop is continued until we find the 

axial compressive force under which the probing force F reaches a maximum and starts reducing. 

The output of Step I is the initial prescribe axial load P0—the minimum axial compression for 

which the probing force F reaches a maximum and starts reducing. The initial prescribe axial load 

P0 is the input for step II. In step II, we put the cylinder under 11 axial compressions, i.e.,  (1 + 

.025)0 ×P0, (1 + .025)1 ×P0, (1 + .025)2 ×P0, …. (1 + .025)10 ×P0. In all 11 cases, the cylinder is 

probed, and probing forces-displacement data is collected. Next, the maximum probing force Fmax 

is extracted for all the 11 cases. In step III, the plot is drawn between the Fmax (x axis) and 

corresponding axial compressions P (y axis). After that, using linear interpolation, the best fit line’s 

equation is determined. The value of the y axis corresponds to the intersection of the line with the 

y axis is the predicted capacity of the cylinder.     

 

 
 

Figure 1: Flowchart of the proposed algorithm; there are three steps in this algorithm. In Step I, the initial prescribed 

axial load Po is found; in Step II, 11 data of maximum probing force Fmax  is collected corresponds to axial 

compressions (1 + .025)0 ×P0, (1 + .025)1 ×P0, (1 + .025)2 ×P0, …. (1 + .025)10 ×P0; in Step III, linear interpolation of 

Fmax and axial compression is used to predict the capacity of the cylinder.    
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3. Application of the Algorithm on a Perfect Cylinder 

In this study, we are limited to the computational implementation of the proposed algorithm, and 

the experimental implementation is not reported. First, we apply the algorithm on a perfect cylinder 

to assess the accuracy of the predicted capacity by comparing it with the actual capacity that is 

known. For this purpose, we chose the cylinder used by Gerasimidis et al. (2018) assuming linearly 

elastic material behavior. The dimensions and the material properties of the cylinder are given in 

Table 1.  

 
Table 1: Dimensions and the material properties of the cylinder 

Radius R Length L R/t E N 

(in) (in)  (Psi)  

9 31 225  10.6 0.3 

                                                                                                                                        

3.1 Finite Element Modeling 

All the analyses are performed in ABAQUS using the arch-length based Riks method (Riks 1979). 

For meshing, around 20000 four node reduced integration shell (S4R) elements are created, 

utilizing four integration points along the thickness of each element. The proposed algorithm has 

two parts: first, the cylinder is put under the prescribed axial compression, and second, the 

application of the probing force on the compressed cylinder. Fig. 2 demonstrates the Finite 

Element Modeling. For compressing the cylinder to a prescribed axial compression, two nodes are 

defined at the center of the top and bottom cross-sections of the cylinder; we call them center 

nodes. Rigid links are created to connect the nodes at the end of the cylinder to the respective 

center nodes to constrain the displacements U1, U2, and U3, and rotations UR1, UR2, and UR3 of 

the nodes at the end from moving and rotating with respect to the center nodes. Using these 

constraints one end of the cylinder is clamped by fixing the central node at z = 0. At the other end 

(z = L) a clamped boundary condition is enforced, but the end of the cylinder is loaded by applying 

an axial displacement U3 = -Δ till the axial compression reached the prescribed value as shown in 

Fig. 2a. Once the cylinder is loaded under the prescribe axial compression, the probing force, 

directed toward the center of the cross-section, is applied in the middle of the cylinder as shown 

in Fig. 2b. With this description of finite element modeling, we will discuss the results in the next 

subsection. 

 

 
Figure 2: a) Finite element modeling and boundary conditions. b) Application the axial compression P and probing 

force F.  
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3.2 Prediction of the perfect cylinder’s capacity 

The application of Step I of the algorithm on the perfect cylinder results in the initial prescribed 

axial load P0 = 1.4571e+04 lbf. This initial prescribed axial load P0 is the input for Step II. In Step 

II, we put the cylinder under 11 different prescribed axial compression P = (1 + .025)0 ×P0, (1 + 

.025)1 ×P0, (1 + .025)2 ×P0, …. (1 + .025)10 ×P0; thereafter, the probing force is applied at the 

middle of  all the 11 axially compressed cylinders.  In Fig. 3a, the plots between probing forces F 

and the probing displacements D are drawn for the 11 axially compressed cylinders. The maximum 

probing force Fmax is reducing with the increase of the axial compression; it is expected as the 

energy barrier is reduced with the increase of  axial compress (Virot et al. 2017)—less and less 

energy is required to shift the pre-buckling configuration to the post-buckling configuration as 

axial compression increases. In Fig. 3b, scatter plot is drawn between maximum probing force Fmax 

and corresponding prescribed axial compression. These data are fitted by the line and the equation 

of the line is:  

 

 𝑃 =  −1184𝐹𝑚𝑎𝑥 + 5.559 𝑒04 (1) 

 

The predicted capacity of the cylinder is the value of the P (y axis) corresponds to the value of Fmax 

(x axis) = 0; thus, the predicted capacity is 5.559 e04 lbf. The actual capacity of the perfect cylinder 

is 6.450 e04 lbf that is 16 % more than the predicted capacity. This margin is quite satisfactory and 

gives confidence in the proposed algorithm. However, the real strength of the algorithm is tested 

by its application on imperfect cylinders. In the next section, we apply it to imperfect cylinders 

and evaluate its accuracy.           

 

 
Figure 3: a) The plots between probing forces F and the probing displacements D for the 11 axially compressed 

perfect cylinders. b) The scatter plot between the maximum probing force Fmax and corresponding prescribed axial 

compression along with the best fit line and its equation. 

 

4. Application of the Algorithm on the Imperfect Cylinders 

All real structures contain imperfections, and it is the capacity of imperfect cylinders that have 

been a nuisance for a long time. We do not know prior to the shape and size of the imperfections;  

and thus, knowing their capacity is difficult if not impossible. Consequently, designers must rely 

on conservative knockdown factor methods. In this section, we apply our proposed algorithm on 

imperfect cylinders and see if it is working well or not. For this purpose, we created two types of 

imperfect cylinders: first, single dimple imperfect cylinder, and second, double dimple imperfect 
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cylinder. Single dimple imperfect cylinder contains a single dimple, and double dimple imperfect 

cylinder contains two dimples. 

  

 
Figure 4: Single dimple imperfect cylinder (a), and seven double dimple imperfect cylinders with the varied relative 

location of the dimples (b, c, d, e, f, g, and h). 

 

The mathematical expression of the dimple used in this study is (Gerasimidis et al. 2018): 

      

 𝑤 =  𝑤0𝑒
−(

𝑥

𝑥1
)

2

𝑒
−(

𝜃

𝜃1
)

2

 (2) 
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Where w represents the deviation of shell surface from its perfect position in the radial direction, 

and w0 is the amplitude of the imperfection. x and θ are the axial and circumferential coordinates 

with the origin placed at the middle of the dimple’s projection on the perfect cylinder’s surface. x1 

and θ1 are the parameters that decide the length (in the axial direction) and width (in the 

circumferential direction) of the dimple. The values for x1 and θ1 are chosen such that the length 

(2x1) and the width (2Rθ1) of the dimple are equal to the first eigenmode wavelength of the circular 

cylinder under axial compression, i.e. 3.44√ Rt for ν = 0.3 (Timoshenko et al. 1961). For single 

dimple imperfect cylinder, the dimple is placed in the middle of the cylinder as shown in Fig. 4a. 

For double dimple imperfect cylinder, the first dimple is placed at the middle of the cylinder, and 

the second dimple is placed at 7 different location as shown in Fig. 4b to Fig. 4h.   
 

4.1 Prediction of single dimple imperfect cylinder’s capacity  

The application of Step I of the algorithm on the single dimple imperfect cylinder gives initial 

prescribed axial load P0 = 4.628 e+04 lbf. This initial prescribed axial load P0 is the input for Step 

II. In Step II, we must decide the location of the probing force. We apply the prob at 7 different 

paces as shown in Fig. 5 and Fig. 6: one in the middle of the dimple (Location 0), three at the 

middle of the cylinder but away from the dimple (Locations 1, 2 and 3), and three away from the 

middle of the dimple along the axial direction (Locations 4, 5 and 6). In this section we describe 

the case when probing is applied in the middle of the cylinder (Location 0); other cases will be 

discussed in the subsequent subsection.  

 

 
Figure 5: Various locations of probing force along the circumferential direction. Probing is in the middle of the 

dimple (Location 0), and the probing is in the middle of the cylinder but away from the middle of the dimple 

(Location 1, Location 2, and Location 3).     
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Figure 6: Various locations of probing force along the axial direction. Probing is at the middle of the dimple 

(Location 0) and probing along the axial direction away from the middle of the cylinder (Location 4, Location 5, and 

Location 6). 

 

 
Figure 7: a) The plots between probing forces F and the probing displacements D for the 11 axially compressed 

single dimple imperfect cylinders. b) The scatter plot between the maximum probing force Fmax and corresponding 

prescribed axial compression along with the best fit line and its equation. 
 

In Step II, the cylinder is axially compressed under 11 different prescribed axial compression P = 

(1 + .025)0 ×P0, (1 + .025)1 ×P0, (1 + .025)2 ×P0, …. (1 + .025)10 ×P0; thereafter, the probing force 

is applied at Location 0 of the 11 axially compressed cylinders. In Fig. 7a, the plots between 

probing forces F and the probing displacements D are drawn. Here again, the maximum probing 

force Fmax is reducing with the increase of axial compression as expected. In Fig. 3b, scatter plot 
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is drawn between maximum probing force Fmax and corresponding prescribed axial compression. 

These data are fitted by the line whose equation is:  

 

 𝑃 =  −969.3𝐹𝑚𝑎𝑥 + 4.628 𝑒04 (3) 

 

The predicted capacity of the cylinder is the value of P (y axis) corresponds to the value of Fmax (x 

axis) = 0 and is 4.628 e04 lbf. The actual capacity of the single dimple imperfect cylinder, found 

by nonlinear FEM analysis, is 4.975 e04 lbf—7.5 % more than the predicted capacity. So, our 

algorithm predicts the capacity very accurately if we apply the probing force in the middle of the 

imperfection. But, in all practical applications, the imperfection and its middle location are 

unknown; thus, the study of the location of probing is necessary. That is the subject of the next 

subsection. 

     

4.2 Effect of the location of probing on the predicted capacity 

To study the impact of the location of probing, 7 locations are chosen as shown in Fig. 5, and the 

proposed algorithm is applied for these 7 locations. The results are shown in Fig. 8 in the form of 

the ratio of predicted to actual capacity (y axis); the x axis does not represent any physical quality. 

A general pattern can be seen in this figure that is the predicted capacity is increasing as the probing 

location is moving away from the dimple. This is happening because the probing profile (probe 

force displacement plot) is not able to identify the characteristics of the imperfection when the 

probe is away from the imperfection. 

 

 
Figure 8: The effect of probing locations on the predicted capacity. (a) The probing location varies along the 

circumferential direction, and (b) probing location varies along the axial direction. The results are presented in the 

form of the ratio of predicted to actual capacity (y axis); the x axis does not represent any physical quantity, and the 

identity of the locations is represented by numbers 0, 1, 2, 3, 4, 5, 6, and 7.    

 

Fig. 6a shows the effect of probing location along the circumferential direction, whereas Fig. 6b 

illustrates the effect of probing along the axial direction. For Location 0, the predicted capacity is 

minimum and less than the actual capacity; similarly, for Location 1, the predicted capacity is less 

than the actual capacity. For these two cases, the location of probing is inside the dimple; thus, the 

probing profile can capture the presence of the imperfection. For the other cases, i.e., Locations 2, 

3, 4, 5, and 6, the predicted capacity is more than the actual capacity because the probing profile 

is not able to fully capture the imperfection. Nevertheless, there is not much difference among the 

predicted values irrespective of the probing locations. For example, the difference between the 
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predicted values is about 25 % (of predicted value by probing at Location 0) for Location 0 and 

Location 5. So, it can be concluded that the location of probing affects the predicted value, but not 

substantially. For practical applications,  the probing can be done around 5 to 6  different places, 

and the average value of the predictions can be assumed as the capacity of the cylinder; this will 

remove the uncertainties associated with the location of the probing. In our example, the average 

value of the predicted values of 7 probing locations is 5.229 e04 lbf—5 % more than the actual 

capacity. So, if we applied our algorithm with multiple probing locations, the average of predicted 

values is quite a reasonable estimate of the cylinder’s capacity.  

 

4.3 Prediction the double dimple Imperfect cylinder’s capacity  

To test our proposed algorithm further, we implement it on the double dimple imperfect cylinder 

that contains two dimples as shown in Fig.5. First, we analyze the case A when the two dimples 

are located diametrically opposite direction at the middle of the cylinder, and the probing force is 

applied at the middle of the first dimple. The application of Step I of the algorithm results in the 

initial prescribed axial load P0 = 4.594 e+04 lbf.  In Step II, the cylinder is put under 11 different 

prescribed axial compression P = (1 + .025)0 ×P0, (1 + .025)1 ×P0, (1 + .025)2 ×P0, …. (1 + .025)10 

×P0; thereafter, the probing force is applied at the middle of the first dimple. In Fig. 6a, the plots 

between probing forces F and the probing displacements D are drawn for the 11 axially compressed 

cylinders. Fig. 3b, a scatter plot is drawn between the maximum probing force Fmax and 

corresponding prescribed axial compression. The data are fitted by the line whose equation is:  

 

 𝑃 =  −948.1𝐹𝑚𝑎𝑥 + 4.594 𝑒04 (4) 

 

The predicted capacity of the cylinder is 4.594 e04 lbf that is the value of P (y axis) corresponds to 

the value of Fmax (x axis) = 0. The actual capacity of the imperfect cylinder, found by FEM analysis, 

is 5.000 e04 lbf—9.00 % more than the predicted capacity. Again, our algorithm predicts the 

capacity quite accurately if we apply the probing force in the middle of the imperfection one 

dimple.  

 

 
Figure 9: a) The plots between probing forces F and the probing displacements D for the 11 axially compressed 

double dimple imperfect cylinders when the two dimples are diametrically opposite direction. b) The scatter plot 

between the maximum probing force Fmax and corresponding prescribed axial compression along with the best fit 

line and its equation. 
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Figure 10:  Effect of relative positions of the dimples on the predicted capacity for the double dimple imperfect 

cylinders. 

 

For the other cases, i.e., B, C, D, E, F, and G of Fig. 5, the predicted values are illustrated in Fig. 

10 in form of the ratio of predicted to actual capacity. In all the cases the first dimple is in the 

middle of the cylinder, while the location of the second dimple varies along the circumferential 

and longitudinal direction. The probing is always applied in the middle of the first dimple. The 

proposed algorithm predicts the same capacity in all cases. This means the relative location of two 

dimples does not influence the prediction if one of the dimples is in the middle of the cylinder and 

probing is applied in the middle of this dimple. The location of probing might affect the predicted 

capacity, but we have not yet studied the effect of probing locations for the double dimple 

imperfect cylinder. However, these results suggest the possibility that a procedure can be 

developed to predict the capacity of thin cylinders containing multiple dimple imperfections.     

 

5. Conclusions 

Thin cylindrical shells that are used in engineering applications always contain imperfections; as 

a result, their actual capacities are difficult, if not impossible, to determine. In this study, a new 

non-destructive method based on the energy barrier approach is proposed to determine the capacity 

of thins cylinders and is computationally validated. First, this method is applied to a perfect 

cylinder, which results in a 16 % accurate prediction. Further, this method is applied to two 

imperfect cylinders: single dimple imperfect, and double dimple imperfect cylinders. For the single 

dimple imperfect cylinder, the predicted capacity is 7.50 % accurate if the probing force is applied 

in the middle of the dimple. The location of the probing force affects predicted capacity but not 

substantially. For the double dimple imperfect cylinder, the prediction is 9 % accurate when the 

probing is applied in the middle of one dimple, while the other dimple is located diametrically 

opposite direction. The predictions are sufficiently accurate (with an accuracy of around 10 %) for 

the other combinations of two dimples. Our study is limited in many ways: the experiments have 

not been done for further verification, and only two types of imperfections are used. Nevertheless, 

the presented results are very promising and encouraging; experiments and additional studies will 

be done in the future to refine the proposed algorithm further.       
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