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Abstract 

Light-weight spatial structures with high demands for aesthetics, structural strength and stability 

may very efficiently be built using high-strength steel Rectangular Hollow Sections (RHS) or 

Square Hollow Sections (SHS). Currently, the use of these sections is partly hindered by an 

underlying over-conservatism in design rules for local buckling of the cross-section, since most 

high-strength steel sections are slender with regards to local buckling. This paper illustrates a novel 

approach for the design of thin- to thick-walled RHS and SHS against elastic and elasto-plastic 

local buckling. It introduces a “Generalized Slenderness-based Resistance Method” (GSRM), 

which was developed over the course of an extensive, multinational and EU-funded research 

project – HOLLOSSTAB (2016-2019). The method further generalizes advanced cross-sectional 

definitions of local and global slenderness, ultimately providing a strength-based resistance 

approach that generalizes the concepts of established design methods such as the Direct Strength 

Method. In the GSRM, the slenderness and buckling resistance are both based on the section elastic 

resistance and incorporate the overall applied load case. This new format is used as the basis for 

the derivation of new design rules, which were developed through an extensive parametric study 

and mechanical model calibration. The presented study also includes an analysis of the underlying 

level of the reliability of the GSRM design rules and compares its advantages over conventional 

design methods for square and  rectangular sections especially for slender cross-sections loaded 

by general direct stresses caused by compression and arbitrary bi-axial bending. 

 

1 Introduction 

 

1.1 General remarks and scope 

In recent years, it was regularly observed that current design standards lack in accuracy and 

economy when applied to High-Strength Steels and more complex load cases, even for – at first 

sight – well understood section types such as hollow structural sections (HSS). This has been 

observed by several authors for the European codes (Eurocode3 2006), where a lack of accuracy 

and – sometimes – also safety of design rules based on the Winter curve (Winter 1946) and applied 

to the design of box and rectangular hollow sections was noted (see e.g. Schillo et al. 2018). Similar 
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observations also apply to North American standards (e.g. ANSI/AISC 2016 and AISI 2016). In all 

these standards, albeit due to different reasons, the inaccuracies are most pronounced in the 

presence of combined loading (compression and uni- or bi-axial bending). This paper describes a 

new methodology for the cross-sectional design checks of SHS and RHS, the Generalized 

Slenderness-based Resistance Method (GSRM). This method was developed over the course of 

the EU-funded (RFCS) research project HOLLOSSTAB (Taras et al. 2019), as part of a wider 

effort to better understand the behavior and strength of hollow sections and improve the economy 

and practicality of design rules dedicated to these types of section. The method thereby reprises 

concepts found in methods such as the ones used in Eurocode 3’s “General Method”, the Overall 

Interaction Concept - OIC (Boissonnade et al. 2017; Kettler et al. 2009), the Direct Strength 

Method – DSM (Schafer 2008; Schafer 2018) and the Continuous Strength Method - CSM 

(Gardner, 2008; see also Afsahn and Gardner 2013; Yun and Gardner 2018a; Fieber et al. 2019). 

The commonality of these methods is that they make use of a more generalized definition of 

slenderness, which is usually determined with the aid of dedicated numerical tools, as the main 

input parameter for the calculation of strength, which in turn is given as a (direct) function of this 

slenderness. The GSRM developed during HOLLOSSTAB is a dedicated, new design rule, based 

on slenderness definitions of this type, which may be applied to various types and shapes of hollow 

sections and for cross-sections as well as members. 

 

The present paper is structured in a manner that closely follows the various steps taken in 

HOLLOSSTAB for the development and validation of the new GSRM design rules for cross-

sectional design checks. The first part of the paper briefly describes the physical test campaign and 

the numerical parametric study of the cross-sectional strength of SHS and RHS carried out within 

the project. This work formed the basis for the subsequent formulation, calibration and validation 

of the new GSRM design rules, which are described in the second part of the paper. Finally, 

quantitative comparisons between the levels of accuracy of current Eurocode 3 (EC3), AISC 

design rules and the GSRM are given. The present paper specifically focuses on the development 

of GSRM design rules for the cross-sectional strength of square or rectangular HSS. The reader 

may also refer to Meng et al., (2019) for an analogous treatment of the cross-sectional capacity of 

circular and elliptical hollow sections. 

 

1.2 Basic concepts of the GSRM 

The GSRM, in its application to cross-sectional design checks, is a method that makes use of an 

overall definition of the local buckling slenderness, valid for the cross-section as a whole and de-

rived from elastic (numerical) bifurcation analysis. On its basis, it provides a continuous 

representation of strength throughout slenderness ranges. A schematic graphical representation of 

the method as applied to cross-sectional resistances (local buckling, index “L”) is given in Fig. 1. 

In addition to the variables described in detail below, the figure makes use of the following 

parameters: 

N applied axial compressive force 

Npl plastic compressive capacity of the gross cross-section Npl=Afy 

fy yield stress 

M applied bending moment 

Mel elastic bending moment resistance, Mel = Wel fy 

Mpl plastic bending moment capacity, Mpl = Wpl fy 
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Fig. 1: Graphical representation of the GSRM design approach for cross-sectional resistance / local buckling “L”: (a) 

strength curves in the L - λ̅L plane and (b) n-m interaction curves. 

 

The following steps and procedures are involved in the GSRM-based strength design of cross-

sections: 

 

1. Calculation of a cross-sectional reference resistance, Rref, associated with the stress field 

stemming from the load case under consideration, which is a combination of axial force and 

bending defined by a vector length   and an angle  in the n-m plane, respectively two angles 

y and z in the n-my-mz space. Owing to the greater ease of representation, the in-plane case 

is illustrated, see Fig. 1b). While in principle these quantities could be defined in a variety of 

different ways, in this plot n and m are the axial force and bending moment normalised with 

respect to the corresponding ideal plastic resistances (yielding in all fibres).  

 

 φy = arctan (
my

n
)  φz = arctan (

mz

n
)     (1) 

Where 

my =
My,Ed

My,pl
    ;    mz =

Mz,Ed

Mz,pl
    ;    n=

NEd

Npl
 (2) 

 

The reference resistance Rref must be defined in a uniform manner in the GSRM. Both the 

plastic resistance Rpl and the elastic resistance Rel fulfil this basic requirement. Thereby, Rpl is 

the load amplification factors for the considered load case needed to reach the theoretical ideal-

plastic condition (yielding in all fibres, no strain hardening), while Rel defines the first yield 

load (yielding in one extreme fibre of the cross-section). As will be discussed in more detail in 

the paper, for the GSRM the elastic quantity Rel was finally chosen as the reference resistance. 

2. Calculation of the cross-section (local) critical elastic bifurcation/buckling load factor, Rcr,L, 

which once again is associated with the same stress resultant profile defined in the previous 

item. 

3. On the basis of the two values calculated in the two previous items, calculation of the cross-

sectional (local) slenderness, defined as: 
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 λ̅L = √
Rref

Rcr,L
 (3) 

4. Retrieval of the buckling factor L from a pre-determined set of equations. The functions and 

equations that determine the values of the buckling factors L (for local buckling) or G (for 

global, member buckling) are the key component of a design method such as the GSRM. In 

HOLLOSSTAB, they were developed for the cross-sectional as well as the member buckling 

strength of hollow sections of various shape and steel grade. 

5. Determination of the buckling strength Rb,L by the following formula: 

𝑅b,L = 
L
𝑅ref (4) 

Concerning the above steps and procedures, the following additional comments should be 

considered: 

i. Rref and Rcr,L may be calculated by means of available analytical expressions, for very simple 

load cases, or through numerical analysis, for more general load cases. In the latter case, it is 

fruitful to develop dedicated software tools, as was done in HOLLOSSTAB.  

ii. On the other hand, the value of Rcr,L may be obtained for a simply supported member of length 

corresponding to the first buckling wave length Lcr,L,n=1 and a uniform stress distribution along 

this length; it is thus not necessary to consider the particular end support conditions and stress 

distribution along the considered member. 

iii. In addition to the mentioned resistance factors, other parameters related to the cross-section 

properties are needed to define the strength curves in both the slender and the stocky ranges. 

For example, in the stocky range, the plastic resistance of the cross-section Rpl is also a 

parameter of interest, even though it is not directly used in the slenderness definition of the 

GSRM.  

 

2 Experimental campaign 

Among the various hollow section types considered by the research partners in HOLLOSSTAB, 

cold-formed and hot-finished SHS and RHS, as shown in Fig. 2, made of mild or high-strength 

steel, were tested at the laboratories of structural engineering of Bundeswehr University Munich 

(BWU), Imperial College London (ICL) and Técnico Lisboa (IST). A total of 97 tests on short 

columns and beam-columns were conducted between the three laboratories in order to provide the 

full-scale experimental evidence for the development of numerical models and GSRM design rules 

for the cross-sectional resistance of such components. The test methodology and main results 

obtained in the subset of the test campaign of HOLLOSSTAB that was carried out at BWU will 

be briefly discussed in the following, thereby exemplifying the procedure generally adopted at all 

involved laboratories in the project. Full details on the experimental campaign on SHS, RHS and 

derived hollow section shapes can be found in the published documentation of the HOLLOSSTAB 

project (Taras et al., 2019). 

 

Cold-formed SHS and RHS (in addition to several derived sections such as hexagonal sections and 

groove-stiffened SHS, see also Toffolon et al. 2019a) were studied at the structural laboratory of 

BWU. The sections’ outer dimensions and wall thicknesses were chosen by keeping in mind the 

general objective of the HOLLOSSTAB project, which was to provide design rules that lead to 

improvements particularly for more slender sections, i.e. mainly class 3 and 4 sections according 
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to Eurocode 3. Of the six RHS /SHS tested at BWU, four were made of S355 steel, while two were 

cold-formed higher strength steel sections with measured values of the yield stress of above 

Rp0,2=700 N/mm². 

 

 
Fig. 2: Scope of this paper: cross-sectional strength of square and rectangular hollow sections (SHS, RHS) 

fabricated acc. to EN 10219 (cold-formed sections) or EN10210 (hot-finished sections) with steel grades from 

(normal strength) S355 to (high strength) S770.  

 

The full-scale experimental tests on local buckling at BWU comprised two test setups: stub-

column tests and short beam-column tests. Different levels of eccentricity were applied to obtain 

different combinations of axial compression and bending moment. The full-scale tests were 

performed in a 10 MN servo-hydraulic test rig, where the load cells incorporate a linear variable 

displacement transducer and a pressure transducer, see Fig. 3a. A digital image correlation system 

(DIC) produced by GOM was used to monitor deformations and rotations of the specimen surfaces 

and of the test rig itself. These measurements were also compared to test data from inclinometers 

and strain gauges applied to the specimen.  

 

 
Fig. 3: a) test setup for the stub-column test, b) point cloud of the 3D scan data, c) 3D results of measuring system of 

a SHS specimen. 
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For each specimen, the experimental campaign also included auxiliary tests such as tensile coupon 

tests and imperfection measurements. These were carried out in order to have sufficient 

information on each test to perform an accurate validation of numerical models, see the following 

section, which in turn were used for an extensive parametric study. Additionally, a 3D scanning 

technique was employed to measure the distribution of local geometric imperfections in each test 

specimen. The real geometry of the specimen including imperfections was then used in the 

numerical simulation by laying spline surfaces on the cloud points from the 3D scanning 

measurement, as is shown in Fig. 3b. Additionally, the 3D scan data were statistically evaluated 

with respect to shape deviations and tolerances from the nominal geometry. Fig. 3c demonstrates 

an example of the evaluation of a SHS specimen. 

 

3 Validation and calibration of the numerical model 

 

3.1 General remarks 

The principal aim of the experimental campaign was to provide the basis for the validation of 

advanced numerical models that use Geometrically and Materially Non-Linear FEM-Analyses 

with Imperfections (GMNIA) to realistically and accurately simulate the behaviour of the studied 

sections loaded in compression and bending. The development and validation of these Finite 

Element Method (FEM) models was thus performed through comparisons with the experimental 

tests. This reverse engineering process, using GMNIA analyses with the measured geometrical 

shape of the sections and an accurate material model, can lead to very small (<3%) deviations to 

the ultimate load of the buckling tests if the meshing and modelling of boundary conditions are 

accurate. This type of GMNIA, which uses measured input data and was performed during the 

reverse engineering and model validation phase, is denoted by “GMNIA-MEAS” in the following. 

The proprietary software Dassault Simulia ABAQUS (2016) was used for all numerical 

simulations, employing linear isoparametric shell elements with reduced integration (element type 

S4R). As a result of the model validation, a mesh density with a minimum of 60 elements in 

circumferential and 200 elements in longitudinal direction was found to lead to converging results 

of high accuracy. 

 

An example of an FEM model validation is shown in Fig. 4. The RHS specimen deformed shape 

in a) was caused by an eccentric compressive load and the deformations were measured by a GOM 

(Aramis) DIC system. The corresponding GMNIA-MEAS is able to reproduce both the position 

and shape of the post-buckling deformations as well as the peak load itself quite accurately, see 

Fig. 4b) and c). As the figure also illustrates, the load-shortening and load-rotation paths obtained 

from the FE models were typically too stiff up to the peak load and descended more rapidly than 

in the experimental observation. For the purposes of the project, these deviations in the load-

deformation paths were not of concern, as the peak value of resistance was the main value against 

which the models were validated. Full details on the model validation and calibration may be found 

in Taras et al. (2019), Toffolon et al. (2019b). 

 

In summary, the following statistics of the model validation were obtained: 

• for the 12 stub-column tests (pure axial compression) conducted at BWU and considered 

here, the average of the ratio between the peak load in the validated GMNIA-MEAS 

models and the experimental tests was Fmax,FEM/Fmax,test=0.99, with a standard deviation of 
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3.2%.  

• for the total of 48 BWU stub-column and short beam-column tests on RHS/SHS and 

derived section shapes, an average value of Fmax,FEM/Fmax,test=0.99 was obtained, with 4.2% 

standard deviation. 

 

 
Fig. 4: a) GMNIA-MEAS model vs. test results, specimen deformed shape measured with DIC; b) Load-

deformation and load-rotation plots. 

 

While the experimental campaign carried out in HOLLOSSTAB was extensive, it nevertheless 

could not cover the full range of section shapes, material grades and – most importantly – 

combinations of compression forces and bi-axial bending moments that the new GSRM design 

rules need to cover. For this reason, an exhaustive numerical parametric study was carried out, 

thus providing the otherwise missing comprehensive database of test results via numerical tests. 

The scope and employed methodology of the parametric study is described in this section, while 

the results are mainly illustrated in the context of the development of the GSRM design rules, 

where they provide the basis for comparisons with the new design proposals. 

 

3.2 Methodology – simplified model with equivalent imperfections 

In order to make the parametric study efficient, the previously described GMNIA-MEAS models 

had to be simplified with regards to the modelling of imperfections and material laws. Thus, a 

more generalized model, with a simplified definition of the material law and the geometrical 

imperfections, yet the same FEM mesh size and element types as the ones validated through the 

calibration to the experimental tests, was developed. In a first step, the geometrical input was 
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calibrated. Thereby, the GMNIA-MEAS load-deformation curves described in the previous 

section were compared to different GMNIA calculations with nominal cross-sectional geometry 

(outer dimensions) and varying equivalent imperfection amplitudes. The first buckling mode of a 

Linear Buckling Analysis (LBA) represents a sensible and well-established basis (see e.g. Annex 

C of Eurocode 3 Part 1-5 2006) and is chosen as input for the imperfection calibration for the 

GMNIA. 

 

A representative example for this calibration is shown in Fig. 5, where the load-deformation curves 

for two different SHS sections are shown and the GMNIA-MEAS curves are compared to GMNIA 

curves obtained from an analysis with an equivalent geometric imperfection based on a scaled (by 

the indicated value of e0) first buckling mode for local buckling, obtained from an LBA. The same 

material model (taken from tensile tests) was used for both calculations, thus allowing for an 

isolation of the effect of imperfections on the obtained peak loads. The imperfection amplitudes in 

this figure range from B/400 up to B/150, where B is the external width of the SHS. The figure 

illustrates the moderate sensitivity of the peak load to variations of the LBA buckling mode scaling 

factor e0.  

 
Fig. 5: calibration of the imperfection amplitude for a a) SHS 200×200×5 S355 (pure compression), and b) SHS 

200×200×8 S355 (compression + bending) 

 

Finally, a value of e0=B/400 was chosen, as this value was taken to be generally more 

representative for the local buckling behaviour of these SHS, RHS, SHS-S and SHS-T sections 

than the value of e0=B/200 recommended for design tasks in Eurocode design provisions (Annex 

C of Eurocode 3 Part 1-5, 2006). This is also in line with the findings of e.g. Rusch and Lindner 

(2001): they determined that amplitudes of B/400 are most suitable to represent the so-called 

Winter curves (Winter, 1946) for local buckling in numerical analyses. An assessment of the 

reliability level of the design rules in the Eurocodes was recently carried out in Schillo et al. 2018, 

highlighting inhomogeneity caused by the discontinuities in current design rules for hollow and 

box sections of various shapes. 

 

An overview and summary of the aforementioned model assumptions and chosen procedure for 

the FEM parametric study is given in Fig. 6. Thereby, Fig. 6b) and c) schematically represent the 

first buckling mode for an exemplary SHS and RHS subjected to different load combinations. In 
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part a) of the figure, a material model specifically developed by Yun and Gardner (2017, 2018) 

for the stress-strain relationship of hot-finished and cold-formed sections are shown. These were 

finally used in the parametric study, using the nominal values of the yield stress and tensile strength 

for each considered material. The use of these material models also has the added advantage that 

it manages to reproduce the effects of residual stresses on the buckling strength in an overall 

manner. For a more detailed description of this aspect and of the calibration of the GMNIA model 

the reader may refer to Taras et al. (2019a). 

 

 
Fig. 6: Material model chosen for the EN10219 and EN10210 standards; b) cross-section shapes; c) LBA shape for 

the local imperfections 

 

4 Parametric study – overview of input parameters and results 

The aim of the numerical parametric study on the local buckling behaviour of slender and non-

slender cross-sections was the realistic determination of the cross-section capacity under different 

load combinations and for various degrees of local slenderness. For this reason, a large number of 

thicknesses and load combinations was considered. The numerical test campaign conducted for 

the study of local buckling of SHS and RHS alone therefore consisted of around 30000 numerical 

tests (LBA+GMNIA), the parameters of which are shown in Table 1 in form of a test matrix. All 

shown parameters were combined with each other in the numerical test programme. 

 
Table 1: Parameters of the parametric study on local buckling 

Thickness 

(mm) 

L/Lcr 

(-) 

Steel 

grade 

 

Local 

Imperfection 

amplitude 

ϕy 

(°) 

ϕz 

(°) 

H/B 

(-) 

Manufacturing 

standard 

        

2.0 0.1 S355 B/400 0 0 1 EN10219 

2.5 0.15 S460  15 15 1.5 EN10210 

3.0 0.2 S550  30 30 2  

3.5  S700  45 45   

4.0    60 60   

5.0    75 75   

6.3    90 90   

8.0        

10.0        

12.0        

        

        

 

 

 

 

 

 



 10 

Thereby, in the table, the following variables are used: 

 

𝐿

𝐿𝑐𝑟
= 𝑚𝑖𝑛⁡(

𝐼𝑦

𝐴
;
𝐼𝑧

𝐴
)𝜋√

𝐸

𝑓𝑦
   ;   𝜙𝑦 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑚𝑦

𝑛
)   ;   𝜙𝑧 = 𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑚𝑧

𝑛
) 

 

An overview of the results of the extensive parametric study for the local buckling of SHS and 

RHS is given in Fig. 7. For a graphical representation of the results, the 𝜆̅𝐿 / 𝜒𝐿 plot was chosen. 

This representation shows the obtained ultimate strength through the factor 𝜒𝐿, which is the ratio 

between the ultimate strength Rb,L at the cross-sectional level divided by a reference resistance Rref, 

plotted over a generalized slenderness for the cross-sectional (local buckling) strength 𝜆̅𝐿. Each 

point in Fig. 7 represents a single result obtained from a GMNIA as described above. The results 

are marked with colours other than red for special load cases, such as pure compression, pure 

bending about the y and z-axis. Two definitions of the reference resistance Rref and thus of 𝜆̅𝐿 and 

𝜒𝐿are chosen for the data representation in this figure: 

 

in Fig. 7a   𝜆̅𝐿 = √
𝑅𝑝𝑙

𝑅𝑐𝑟,𝐿
  (5) 

        and  

  𝜒𝐿 =
𝑅𝐺𝑀𝑁𝐼𝐴

𝑅𝑝𝑙
 (6) 

in Fig. 7b   𝜆̅𝐿 = √
𝑅𝑒𝑙

𝑅𝑐𝑟,𝐿
  (7) 

        and  

  𝜒𝐿 =
𝑅𝐺𝑀𝑁𝐼𝐴

𝑅𝑒𝑙
 (8) 

 

The plots clearly illustrate that quite different values of L are obtained depending on the definition 

of Rref. Fig. 7a) at first glance seems to indicate a relatively compact scatter band in the Rpl - based 

representation. However, the differences between various L values at a particular slenderness are 

still pronounced, and a simple lower-bound curve would underpredict many capacities by up to 

50%. The most common load cases, such as pure compression or bending moments, are positioned 

in the higher range of the scatter band for this type of representation, with the pure compression 

case showing a similar pattern to the pure bending case. This implies that safe-sided design rules 

based on Rpl would mostly be governed by less common cases with high load eccentricities. 

Different results are obtained if the cross-section reference resistance is given by Rel, with the 

corresponding changes in the definitions of slenderness and knock-down factor. At first, the scatter 

in the corresponding Fig. 7b) appears wider, since very high values of L are reached, mainly due 

to the high difference between Rel and Rpl in bi-axially bent sections. However, as was observed 

during the development of GSRM design rules in HOLLOSSTAB, much clearer patterns emerge 

if Rel is chosen as reference resistance. Very advantageously for the development of practical 

design curves, a description with “Winter-type formulae” is made possible, since most of the 

results follow the pattern of the plotted Winter curve. Conveniently, the standard cases of pure 

compression and pure bending are near the lower bound of resistances. For this reason among 

others, Rref=Rel was finally chosen in HOLLOSSTAB for the representation of the results of the 

numerical parametric study and of the design rules developed from it. 
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Fig. 7: Overview of all results of the parametric study on the cross-sectional (local buckling) strength for cold-

formed RHS & SHS; a) representation of the GSRM buckling knockdown factor using Rpl as reference resistance; b) 

representation using Rel. 

 

5 Development and calibration of GSRM design formulae 

The spread of plasticity that sets on after the exceedance of the yield stress in the outermost fibre 

is a dominant factor in any stability problem in the elastic-plastic transitional range. For this reason, 

even though the GSRM eliminates the concept of cross-sectional classes as currently found in most 

design codes, it is still necessary to distinguish between sections that may reach and exceed the 

elastic resistance Rel and those that will reach the peak load before this point is reached. 

(Incidentally, this is an additional advantage of the choice of Rel as the reference resistance Rref in 

the GSRM). The development and calibration of new, GSRM-type design formulae was thus 

carried out for two distinct ranges. In the following sub-section 5.1, the GSRM design curve for 

the elastic range will be derived from the theory of plate buckling and the calibration of modified 

Winter formulae, familiar from plate buckling cases as defined in most international standards (e.g 

Eurocode 3 Part 1-5, 2006). For the “plastic” range of slenderness, a different formulation is 

provided in 5.2 as a simplified and calibrated linear function. 

 

5.1 Winter-type rules in the elastic range  

Early studies on plate buckling investigated the simplified model of a thin plate (high width to 

thickness ratio) supported on both sides and subjected to a constant in-plane compression load. 

The reduction factor 𝜌 and the plate slenderness 𝜆̅𝑝 can thus be defined as follows: 

 

 𝜌 =
𝐵𝑒𝑓𝑓

𝐵
  (9) 

 𝜆̅𝑝 = √
𝑓𝑦

𝜎𝑐𝑟𝑖𝑡
 (10) 
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This formula makes use of the following parameters: 

 

Beff effective width according to the Eurocode 3 Part 1-5 (2006) definition. 

𝜎𝑐𝑟𝑖𝑡 critical stress according to the Eurocode 3 Part 1-5 (2006) definition. 

 

Using the terms 𝜆̅𝑝 and 𝜌, the plate buckling knock-down factor according to Winter reads: 

 

 ρ =
1

λ̅p
(1 −

0.22

λ̅p
) (11) 

 

where the coefficient 0.22 was finally chosen after different calibrations and proposals (Winter 

1946). The Eurocode method for plate buckling applies the findings of Winter and assesses 

separately 𝜌  for each plate of the cross-section (each considered to have simplified, hinged 

boundary conditions), introducing the parameter ψ, as the ratio between the stress along each plate. 

The reduction factor and the plate slenderness are defined as follows in Eurocode 3 Part 1-5 

(2006): 

 𝜌 =
1

𝜆̅𝑝
(1 − 0.055

3+ψ

𝜆̅𝑝
) (12) 

 𝜆̅𝑝 = √
𝑓𝑦

𝜎𝑐𝑟𝑖𝑡
=

𝑏̅
𝑡⁄

28.4√
235

𝑓𝑦
√𝑘𝜎

 (13) 

 

The chosen approach for the GSRM design rules developed in HOLLOSSTAB makes use of the 

basic structure of Winter’s formulae, generalising it to describe the behaviour of the entire cross-

section as observed in the project’s physical and numerical tests. The slenderness and the reduction 

factors refer to the cross-section properties (geometry and steel grade) and to the applied load. 

Thus, in order to use the Winter formulation and fit it to the results of the parametric study, 𝜌 and 

𝜆̅𝑝 are rewritten as 𝜒𝐿 and 𝜆̅𝐿 in the GSRM: 

 

 χL =
1

λ̅L⁡
(1 −

A

λ̅L⁡
) (14) 

 

Thereby, the parameter A was calibrated to the results of the extensive numerical parametric study 

on local buckling. In this calibration, it was seen to be conducive to good results to define A as a 

function of ψ1 and ψ2, in partial reference to the Eurocode approach. ψ1 and ψ2 are the stress 

ratios in the two plates adjacent to the corner with the highest compressive stress in the section 

(see Fig. 8) and are defined as follows: 

 

 𝛹1 = 𝑀𝐴𝑋(

𝑁

𝐴
+

𝑀𝑦

𝑊𝑒𝑙,𝑦
−

𝑀𝑧
𝑊𝑒𝑙,𝑧

𝑁

𝐴
+

𝑀𝑦

𝑊𝑒𝑙,𝑦
+

𝑀𝑧
𝑊𝑒𝑙,𝑧

  ;  

𝑁

𝐴
−

𝑀𝑦

𝑊𝑒𝑙,𝑦
+

𝑀𝑧
𝑊𝑒𝑙,𝑧

𝑁

𝐴
+

𝑀𝑦

𝑊𝑒𝑙,𝑦
+

𝑀𝑧
𝑊𝑒𝑙,𝑧

) (15) 

 𝛹2 = 𝑀𝐼𝑁(

𝑁

𝐴
+

𝑀𝑦

𝑊𝑒𝑙,𝑦
−

𝑀𝑧
𝑊𝑒𝑙,𝑧

𝑁

𝐴
+

𝑀𝑦

𝑊𝑒𝑙,𝑦
+

𝑀𝑧
𝑊𝑒𝑙,𝑧

  ;  

𝑁

𝐴
−

𝑀𝑦

𝑊𝑒𝑙,𝑦
+

𝑀𝑧
𝑊𝑒𝑙,𝑧

𝑁

𝐴
+

𝑀𝑦

𝑊𝑒𝑙,𝑦
+

𝑀𝑧
𝑊𝑒𝑙,𝑧

)  (16) 
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Fig. 8: Definition and graphic representation of 𝜓1and 𝜓2 as used in the GSRM formulation for the cross-sectional 

capacity of SHS and RHS 

 

ψ1 and ψ2 may be determined in a simplified manner, discounting the presence of the typical 

rounding at the edges of SHS and RHS sections, or more precisely, without significantly changing 

the accuracy of the method. This is justified by the small difference in the actual stress state and 

the increased use of ease of the formulations. In an initial step, a formulation for the parameter A 

was sought that describes the cases with compression and mono-axial (or “in-plane”) bending, 

about either axis. This corresponds to all cases where the stress ratio ψ1 is equal to 1,0 (pure 

compression in one of the plates). For cold-formed (EN 10219) and hot-finished sections (EN 

10210), the following linear functions were determined through calibration and the final choice of 

practical, easy-to-use functions and coefficients. 

 

 𝐴 = 0.225 + 0.025⁡𝜓2 (cold-formed sections) (17) 

𝐴 = 0.20 + 0.02⁡𝜓2 (hot-finished sections) (18) 

 

 

Fig. 9: a) exemplary calibration (mono-axial case) for hot-finished sections; b) overview of the GSRM design curve 

(mono-axial case) for cold-formed sections. 

 

The validation of these calibrated functions for an exemplary combined N+My load case for hot-

finished sections is shown in Fig. 9a). In Fig. 9b), the resulting range of possible design curves for 

cold-formed sections loaded by compression and any level of in-plane bending is shown: the pure 

compression case (ψ2 = ψ1 = +1) and the pure in-plane bending case (ψ2 = −1;⁡ψ1 = +1) are 

displayed with different colours, and the area between the lines corresponds to the various N+My 

combinations. 

 

 
 

 
 

 
 

 
 

 
 

  



 14 

Once the calibration for the mono-axial cases was achieved, the formulation was expanded to 

account for different stress ratios in the “most compressed” plate as well, i.e. for cases with bi-

axial bending, with the results given in Equ. (19) and (20). The additional multiplier as a linear 

function of ψ1 covers the biaxial load case and is expressed as a variation of the formulation found 

in Eurocode 3 Part 1-5 (2006) for linear stress fields in an individual plate: 

 

𝐴 = 0.225 + 0.025𝜓2 
(1+𝜓1)

2
   (cold-formed sections) (19) 

A = 0.20 + 0.02ψ2 
(1+𝜓1)

2
   (hot-finished sections) (20) 

 

The point where the slender range ends is denoted as the “elastic limit slenderness” 𝜆̅0 and is 

calculated as follows: 𝜆̅0 = 0.5 + √0.25 − 𝐴. 

 

5.2 Bilinear resistance function in the plastic (stocky) range  

For the plastic stocky range, two different formulations were developed in HOLLOSSTAB: a 

simplified bilinear function formulation and a method based on the Continuous Strength Method 

(CSM). The former is based on a simple expansion of the previously used, stress-based design to 

the stocky range, while the latter is a strain-based approach. In this paper, only this approach is 

described in more detail. For more details on the alternative, CSM-based approach and generally 

on the development of design rules in both the elastic and plastic range, see Taras et al. (2019). In 

the simplified, stress-based method, a bilinear relation was chosen to represent the resistance in 

the stocky range, where the cross-sectional capacity exceeds Rel. Two “anchor” points are needed 

for this purpose: 

𝜒𝐿 = 1    at    𝜆̅L = 𝜆̅0 

𝜒𝐿 = 𝛼𝑝𝑙    at    𝜆̅𝐿 = 𝜆̅𝑝𝑙 = 0.3 

The proposed formulation for the prediction of the cross-section capacity for the stocky range is 

as follows, with the values for 𝜆̅𝑝𝑙 and the maximum value 𝛼𝑝𝑙 (see Equ. 21) taken to represent the 

data with acceptable safety and accuracy. Thus, in summary, in the stocky range the GSRM design 

proposal reads as follows:  

 

For 𝜆̅𝐿 ≤ 𝜆̅0 : 𝜒𝐿 = 1 + (𝛼𝑝𝑙 − 1) (
𝜆̅0−𝜆̅𝐿

𝜆̅0−𝜆̅𝑝𝑙
) ≤ 𝛼𝑝𝑙 (21) 

where  𝜆̅𝑝𝑙 = 0.3;    𝛼𝑝𝑙 =
𝑅𝑝𝑙

𝑅𝑒𝑙
≤ 1.5 (22) 

 

Fig. 10 illustrates the method and the resulting location of the GSRM design values of the cross-

sectional (local buckling) strength Rb,L,design for all cross-sections and load combinations studied 

during the numerical the parametric study. In Fig. 11a and b, the results of the parametric study – 

in terms of GMNIA resistance divided by the GSRM prediction for the resistance Rel – are plotted 

over the GSRM slenderness definition. The same is also done for the predictions of the GSRM in 

Fig. 11c and d. The figures show that the method captures the general position of the GMNIA 

results in the λ̅L  / χL  plot, particularly in the slender range. The GSRM results appear to be 

positioned somewhat lower than the GMNIA results throughout all slenderness ranges, indicating 

a degree of conservatism, although the degree of conservatism is not easily assessed in this type 

of representation. For this purpose, the ratios between strength predictions were determined in the 

next section.  
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Fig. 10: a) representation of the simplified bilinear relation in the stocky range and Winter formulation in the slender 

range, b) evaluation of the hot-finished and cold-formed sections dataset for the uniaxial bending case (ψ1=1, ψ2 

varies from -1 to 1). 

 

 
Fig. 11: Representation of the GMNIA results for a) cold-formed sections and b) hot-finished sections in the case of 

biaxial bending, where the different colours represents different ranges and combinations of ψ1 and ψ2; in c) and d) 

the corresponding values according to the GRSM proposal are represented 
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6 Comparison of FEM results vs. GSRM and code rules  

In this section, the results of the numerical parametric study are compared to the new GSRM design 

rules for the cross-sectional capacity of SHS and RHS, as well as to the current design rules found 

in the prEN-version of Eurocode 3 and the AISC design specifications. Fig. 12a gives an overview 

of accuracy and safety of the new GSRM design rules by normalizing the numerical test results by 

the rule in the GRSM, see sub-plot a). In addition, the results of the GMNIA and the design method 

(sub-plot b) are also compared with the EC3 design results in the latest prEN-version of EN 1993 

part 1-1 (2018), including the method found in the new Annex B of this standard and developed 

in the RFCS-project SEMI-COMP (Greiner et al. 2008) for the EC3-based design of “semi-

compact” (class 3) cross-sections. Fig. 12c compares the tests with the AISC rules (ANSI/AISC 

360-16 2016). The indices “GMNIA”, “GSRM”, “AISC” and “EC3” thus refer to GMNIA 

numerical results, the new GSRM design proposal, the AISC and prEN 1993 part 1-1 (2018) design 

rules, including this standard’s Annex B. 

 

Fig. 12a shows that the GSRM design displays a very consistent level of accuracy and comparable 

average distance from the GMNIA resistances across all slenderness ranges. The EC3 design rules, 

on the other hand, show much larger inconsistencies and larger scatter in the results for classes 1 

to 4, see Fig. 12b. The AISC rules produce uniform and large scatter over different levels of 

slenderness and a generally decreasing safety level with increasing slenderness (sub-plot c). 

Thereby, the AISC design rules considerably simplify the design procedure compared to the EC3 

rules, with an important side-effect though being a clear lack of precision, especially in the slender 

range. It should however be noted that, in the figure, all resistance predictions were obtained 

without applying safety factors, in order to compare characteristic resistances in all cases. 

 

Gains in strength through the use of the GSRM compared to the current EC3 design strengths are 

thus noticeable particularly for class 4 sections. A - consciously accepted - lower resistance is 

found for class 1 and 2 sections, in order to compensate for an apparent lack of conservatism of 

the Eurocode rules in this range when compared to numerical tests. For class 3 sections, the 

methods are on average equivalent in their strength predictions. For high-strength steel sections, 

which almost exclusively fell in class 3 or (more often) 4, the gains in strength were on average 

above 10%, and above 15% for class 4 sections. In cases with a pronounced level of bending 

biaxiality, the gains are even higher.  

 

When directly compared to the AISC rules, the GSRM predicts on average a very comparable 

strength in the stockier EC3 classes 1, 2 and 3 (1-3% higher, see Fig. 12d) and 11% lower strength 

predictions for the class 4 section, again disregarding the impact of safety factors. It shall however 

be noted that the safety factor proposed for the GSRM method is 1.0, while the AISC rules would 

require a lowering of all values by a LRFD resistance factor of at most 0.9, thus bringing down the 

average design resistances to the level of the GSRM prediction even in the stocky range. 

 

In all cases, particularly those that involve load cases with combined compression and bending, 

the GSRM design method employs a much more straightforward design methodology than the 

Eurocode and avoids the cumbersome determination and use of effective cross-sections (class 4 

sections) respectively of multi-step design strengths for combined loading (class 1 to 3). The 

statistics of these data, which are also represented in Fig. 12, are summarized in  

Table 2. 
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Table 2: Summary of the results average value (m) and standard deviation (s) 

  
Class 1 

and 2 
Class 3 Class 4 

     
𝑅𝑏,𝐿,𝐺𝑀𝑁𝐼𝐴
𝑅𝑏,𝐿,𝐺𝑆𝑅𝑀

 
m 1.12 1.11 1.12 

s 0.09 0.05 0.05 
𝑅𝑏,𝐿,𝐺𝑀𝑁𝐼𝐴
𝑅𝑏,𝐿,𝐸𝐶3

 
m 1.04 1.10 1.25 

s 0.09 0.07 0.13 
𝑅𝑏,𝐿,𝐺𝑀𝑁𝐼𝐴
𝑅𝑏,𝐿,𝐴𝐼𝑆𝐶

 
m 1.16 1.12 0.99 

s 0.17 0.15 0.13 
𝑅𝑏,𝐿,𝐺𝑆𝑅𝑀
𝑅𝑏,𝐿,𝐴𝐼𝑆𝐶

 
m 1.03 1.01 0.89 

s 0.12 0.12 0.11 

     

 

 
Fig. 12: Validation of the GSRM rules vs. GMNIA, AISC and EC3 design rules: a) GMNIA results normalized by 

the GSRM results, plotted over slenderness; b) GMNIA vs. EC3 results; c) GMNIA vs. AISC; d) GSRM vs. AISC. 
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7 Summary and Conclusions 

This paper describes and provides the background to a new design method for the determination 

of the cross-sectional capacities of SHS and RHS made of mild or high-strength steel and loaded 

by any combination of axial (compressive) forces and bending moments about one or both 

principal axes of rotation. The new method, termed the Generalized Slenderness-based Resistance 

Method (GSRM), makes use of a generalization of the slenderness definition, which is commonly 

determined with the aid of dedicated numerical tools. The generalized slenderness is the main input 

parameter for the calculation of strength, given as a (direct) function of this slenderness. The 

GSRM developed during HOLLOSSTAB may be applied to various types and shapes of hollow 

sections and for cross-sections as well as members. As stated, this paper has restricted itself to the 

GSRM design for the cross-sectional capacities of SHS and RHS as well as to only one of two 

alternative approaches in the non-elastic range. The results of the GSR method are compared with 

well-known American and the European code predictions for the cross-section resistance, 

demonstrating significant improvements in consistency, safety and cross-section strength. In 

addition, HOLLOSSTAB also led to the development of a second, strain-based (CSM) approach 

for the design of stockier cross-sections as well as the GSRM design rules for the global buckling 

of members. Further details of the design of members can be found in Taras et al. (2019b) and 

will shortly be published in additional journal papers. 
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