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Abstract 

An inelastic material model was developed and validated for use as normalized tangent modulus 

expressions in MASTAN2 for major-axis and minor-axis beam bending conditions. Limit load 

analyses were conducted using the new material model with 14-DOF beam elements in MASTAN2 

and were compared with published finite element results. The validation study over a range of 

different beam cross-section and loading conditions revealed close agreement with the published 

results. Discussion and recommendations are provided regarding the material model and its use 

when following the design provisions of Appendix 1.3 in the AISC Specification for Structural 

Steel Buildings. 

 

1. Introduction 

Appendix 1 in AISC 360-16 (2016) provides the designer with the option to use advanced methods 

of structural analysis to directly model localized yielding and its effects on system behavior. The 

analysis requirements stipulate that the second-order inelastic analysis must account for geometric 

imperfections and the influence of residual stresses and partial yielding effects. Recent research 

has focused on developing design procedures and equations to account for the reduction in stiffness 

due to partial yielding effects (Kucukler et al. 2104, Rosson and Ziemian 2019, Subramanian and 

White 2017a and 2017b, Tankova et al. 2017). The primary goal of this research is to provide 

designers with an accurate and efficient material model for a 14-DOF beam element when using 

the direct modeling provisions in Appendix 1 to determine the lateral torsional buckling (LTB) 

capacity of rolled I-section beams. 

 

2. Stiffness Reduction Model 

The proposed stiffness reduction () model that accounts for partial yielding of the beam’s cross-

section due to uniaxial or biaxial bending moments is given in Fig. 1. The triangular plateau at the 

top of the model represents the moment conditions for which yielding does not occur (= 1). The 

dashed red curve represents the stiffness reduction due to moments beyond the yield plateau and 

is assumed to vary as an exponential function between 1 and 0. The blue curve at the bottom 

represents the biaxial moment conditions at which = 0 and is assumed to vary as a second-order 
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polynomial defined by the three coordinates (1,0,0), (𝑚𝑧
∗, 𝑚𝑦

∗ , 0) and (0,1,0). The model variables 

are a function of the W-shape’s cross-section dimensions, the residual stress ratio 𝑐𝑟, and the 

exponents 𝑛𝑧 and 𝑛𝑦 for the curves along the 𝒎𝒛 and 𝒎𝒚 axes, respectively. 

 

Figure 1: Stiffness reduction model with variable definitions for major-axis and minor-axis bending   
 

The major-axis moment 𝑀𝑧 and minor-axis moment 𝑀𝑦 are normalized using the respective plastic 

moment capacities as 𝑚𝑧 = 𝑀𝑧/𝑀𝑝𝑧 and 𝑚𝑦 = 𝑀𝑦/𝑀𝑝𝑦. For a given W-shape, and assuming an 

ECCS residual stress pattern (1984), the maximum moment for which 𝜏 = 1 is maintained for 

uniaxial major-axis bending is  
 

𝑚1𝑧 =
𝑆𝑧

𝑍𝑧
(1 − 𝑐𝑟)                                                                  (1) 

 

where 𝑆𝑧 = major-axis elastic section modulus, 𝑍𝑧 = major-axis plastic section modulus and       

𝑐𝑟 = residual stress ratio (𝜎𝑟 𝜎𝑦⁄ ). The similar equation for uniaxial minor-axis bending is  

 

𝑚1𝑦 =
𝑆𝑦

𝑍𝑦
(1 − 𝑐𝑟)                                                                  (2) 

 

where 𝑆𝑦 = minor-axis elastic section modulus and 𝑍𝑦= minor-axis plastic section modulus.  
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The 𝑚𝑧𝑖 and 𝑚𝑦𝑖 coordinates in Fig. 1 are found assuming a linear relationship between 𝑚1𝑧 and 

𝑚1𝑦. 

 

𝑚𝑧𝑖 =
𝑚1𝑦

𝑚𝑦

𝑚𝑧
+

𝑚1𝑦

𝑚1𝑧

                                                                 (3) 

 

𝑚𝑦𝑖 =
𝑚𝑦

𝑚𝑧
𝑚𝑧𝑖                                                                    (4) 

 

Using the 𝑚𝑧𝑖 and 𝑚𝑦𝑖 values, the 𝑚𝑖 scalar magnitude in Fig. 1 is 

 

𝑚𝑖 = √𝑚𝑧𝑖
2 + 𝑚𝑦𝑖

2                                                                 (5) 

 

The 𝑚𝑧
∗ and 𝑚𝑦

∗  coordinates in Fig. 1 are determined from the dimensions of the W-shape and 

correspond to the moments for the plastic neutral axis to be in the position as given in Fig. 2. This 

coordinate is unique to every W-shape and helps to accurately define the 𝜏 = 0 curve in Fig. 1.  

 

 
Figure 2: Plastic neutral axis at 𝑚𝑧

∗ and 𝑚𝑦
∗  

 

The closed-form equations for 𝑚𝑧
∗ and 𝑚𝑦

∗  are 

 

𝑚𝑧
∗ =

𝜆𝜆1 + 6𝜆 + 5𝜆𝑜

𝜆𝜆1 + 4𝜆1 + 4
                                                           (6) 

 

   𝑚𝑦
∗ =

1

2 + 𝜆𝜆0
(2 −

[(4(𝜆1 + 1) + 𝜆𝜆1)𝑚𝑧
∗ − 𝜆𝑜(𝜆1 + 1)2]2

8(𝜆1 + 1)2
)                      (7) 

 

where 𝜆 = 𝐴𝑤/𝐴𝑓, 𝜆0 = 𝑡𝑤/𝑏𝑓 and 𝜆1 = 𝑑𝑤/𝑡𝑓   (Rosson 2016). 
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By way of example, the red curve in Fig. 3 is the biaxial moment condition at 𝜏 = 0 for a W14x53 

based on a detailed fiber element analysis. This curve is approximated using a second-order 

polynomial as given by the blue curve in Fig. 3. A linear approximation as given by the dashed 

blue line in Fig. 3 is used between (𝑚𝑧
∗, 𝑚𝑦

∗ )  and (0, 1) to ensure that 𝑚𝑦𝑗 ≤ 1.  

 

In the assumed quadratic region, the 𝑚𝑧𝑗 and 𝑚𝑦𝑗 coordinate values are found using 

 

𝑚𝑦𝑗 = 𝐶1𝑚𝑧𝑗
2 + 𝐶2𝑚𝑧𝑗 + 1                                                            (8) 

 

where the constants 𝐶1and 𝐶2 are determined using the 𝑚𝑧
∗ and 𝑚𝑦

∗  values from Eqs. 6 and 7. 

 

𝐶1 =   
1 − 𝑚𝑧

∗ − 𝑚𝑦
∗

𝑚𝑧
∗ − 𝑚𝑧

∗2
                                                               (9) 

 

𝐶2 =   
𝑚𝑧

∗2 − 𝑚𝑦
∗ − 1

𝑚𝑧
∗ − 𝑚𝑧

∗2
                                                           (10) 

 

 

 

 
     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: Actual and approximate biaxial moments 𝑚𝑧𝑗 and 𝑚𝑦𝑗 at  = 0 

 

The 𝑚𝑧𝑗 coordinate along the blue curve is defined by  

 

     𝑤ℎ𝑒𝑛 
𝑚𝑦

𝑚𝑧
≤

𝑚𝑦
∗

𝑚𝑧
∗
               𝑚𝑧𝑗 =

(
𝑚𝑦

𝑚𝑧
− 𝐶2) − √(

𝑚𝑦

𝑚𝑧
− 𝐶2)

2

− 4𝐶1

2𝐶1
                                (11) 

 

and the 𝑚𝑧𝑗 coordinate along the dashed blue line is defined by 
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 𝑤ℎ𝑒𝑛 
𝑚𝑦

𝑚𝑧
>

𝑚𝑦
∗

𝑚𝑧
∗
                        𝑚𝑧𝑗 =

1

𝑚𝑦

𝑚𝑧
− (

𝑚𝑦
∗ − 1
𝑚𝑧

∗ )

                                                         (12) 

 

Using the 𝑚𝑧𝑗 coordinate from either Eq. 11 or 12, the 𝑚𝑦𝑗 coordinate is found using 

 

𝑚𝑦𝑗 =
𝑚𝑦

𝑚𝑧
𝑚𝑧𝑗                                                                    (13) 

 

The 𝑚𝑗 scalar magnitude in Fig. 1 is found using the 𝑚𝑧𝑗 and 𝑚𝑦𝑗 values.   

 

𝑚𝑗 = √𝑚𝑧𝑗
2 + 𝑚𝑦𝑗

2                                                                (14) 

 

The 𝑚𝑦𝑧 scalar magnitude in Fig. 1 is found in the same way using the 𝑚𝑧 and 𝑚𝑦 values.   

 

𝑚𝑦𝑧 = √𝑚𝑧
2 + 𝑚𝑦

2                                                                 (15) 

 

Finally, for a given 𝑚𝑧 and 𝑚𝑦 moment condition, the stiffness reduction can be determined using 

Eqs. 5, 14 and 15. 

  
𝑤ℎ𝑒𝑛  𝑚𝑦𝑧 ≤ 𝑚𝑖                                    𝜏 = 1                                                                              (16) 

 

𝑤ℎ𝑒𝑛 𝑚𝑖 < 𝑚𝑦𝑧 ≤ 𝑚𝑗                𝜏 = 1 − (
𝑚𝑦𝑧 − 𝑚𝑖

𝑚𝑗 − 𝑚𝑖
)

𝑛𝑏

                                                         (17) 

 

where the exponent 𝑛𝑏 is a function of the 𝑚𝑦/𝑚𝑧 ratio and the 𝑛𝑧 and 𝑛𝑦 input values.   

 

𝑛𝑏 = (𝑛𝑧 − 𝑛𝑦)𝑒
(
−𝜋
5

 𝑚𝑦

𝑚𝑧
)
+ 𝑛𝑦                                                    (18) 

 

Eq. 18 is a nonlinear regression equation based on the assumption that 𝑛𝑏 varies linearly with 

respect to 𝜙 from 𝑛𝑧 to 𝑛𝑦 ( 0 ≤ 𝜙 ≤ 90
o

 ). The angle 𝜙 given in Fig. 1 is simply a function of the 

𝑚𝑦/𝑚𝑧 ratio where 𝜙 = 𝑡𝑎𝑛−1(𝑚𝑦/𝑚𝑧). The 𝑛𝑧 and 𝑛𝑦 values are exponents like that in Eq. 17 

for the nonlinear stiffness reduction along the 𝒎𝒛 and 𝒎𝒚 axes in Fig. 1, respectively (Rosson and 

Ziemian 2019). The material model allows for the independent input of the 𝑛𝑧 and 𝑛𝑦 values, and 

the residual stress ratio 𝑐𝑟.  

 

3. Inelastic Stiffness Matrix Terms 

The stiffness reduction that occurs due to yielding over the member length is accounted for by 

using several beam elements per member and a stiffness matrix with coefficients that can vary 

depending on the severity of yielding at the initial and terminal nodes. Based on the assumption 

the tangent modulus varies linearly over the length of the element, the coefficient terms provide a 
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reasonable approximation of the reduced flexural and torsional stiffness of the element due to 

partial yielding. In practice, the error introduced by this assumption is reduced by using multiple 

elements along the length of the member. The stiffness matrix developed by Ziemian and McGuire 

(2002) was used in this study because the   values from Eqs. 16 and 17 can be used directly as the 

a and b terms in Eqs. 19, 20 and 21. The stiffness matrix terms in Eqs. 19 and 20 are already in 

MASTAN2, but the stiffness terms in Eqn. 21 were developed and added to the source code.  

 

In the following way, Eqs. 1 through 18 were used in a nonlinear material subroutine of MASTAN2. 

For a given W-shape, the dimensional properties were used to determine the constants 𝜆, 𝜆0 and 

𝜆1. Eqs. 1 and 2 were used to find 𝑚1𝑧 and 𝑚1𝑦 for a specified 𝑐𝑟 condition.  For a given 𝑚𝑧 and 

𝑚𝑦 moment condition, the values 𝑚𝑧𝑖, 𝑚𝑦𝑖 and 𝑚𝑖 were determined using Eqs. 3 – 5. The 𝑚𝑧
∗ and 

𝑚𝑦
∗  values were evaluated using Eqs. 6 and 7, and the 𝐶1 and 𝐶2 constants were found using Eqs. 

9 and 10. With these two constants, and the given 𝑚𝑧 and 𝑚𝑦 condition, the 𝑚𝑧𝑗 value was found 

using Eq. 11 when 𝑚𝑦/𝑚𝑧 ≤  𝑚𝑦
∗ /𝑚𝑧

∗  and Eq. 12 when 𝑚𝑦/𝑚𝑧 > 𝑚𝑦
∗ /𝑚𝑧

∗. The 𝑚𝑦𝑗 and 𝑚𝑗 values 

were found using 𝑚𝑧𝑗 in Eqs. 13 and 14, and 𝑚𝑦𝑧 was determined using Eq. 15. For a given 𝑚𝑧 

and 𝑚𝑦  moment condition, the exponent 𝑛𝑏 was found using Eq. 18 for specified 𝑛𝑧 and 𝑛𝑦 

values. The stiffness reduction 𝜏 was found using Eq. 17 when 𝑚𝑖 < 𝑚𝑦𝑧 ≤ 𝑚𝑗; otherwise 𝜏 = 1 

when 𝑚𝑦𝑧 ≤ 𝑚𝑖 from Eq. 16. The 𝑎 term is the  condition based on the 𝑚𝑧 and 𝑚𝑦 conditions at 

the initial node, and the 𝑏 term is based on the 𝑚𝑧 and 𝑚𝑦 conditions at the terminal node. The 

terms in Eq. 21 can vary based on yielding due to St. Venant’s torsion and the bimoment at the 

initial and terminal nodes. For this application of use it was decided to use the same 𝑎 and 𝑏 terms 

as those in Eqs. 19 and 20 because the stiffness reduction occurs primarily due to yielding of the 

cross-section from the bending moments 𝑚𝑧 and 𝑚𝑦. 

 

     𝒗𝟏                      𝜽𝒛𝟏                        𝒗𝟐                      𝜽𝒛𝟐 

𝐸𝐼𝑧
𝐿

[
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2
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6
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3
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𝐿
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     𝒘𝟏                      𝜽𝒚𝟏                        𝒘𝟐                      𝜽𝒚𝟐 

𝐸𝐼𝑦

𝐿

[
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𝐿2
(
𝑎 + 𝑏

2
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6

𝐿
(
2𝑎 + 𝑏

3
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𝐿2
(
𝑎 + 𝑏
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𝐿
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3𝑎 + 𝑏
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6

𝐿
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2𝑎 + 𝑏
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                    (20) 
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              (21) 

 

4. Material Model Validation Study 

The validity of the new inelastic material model was verified by comparing its results with 

published finite element results by Subramanian and White (2017a, 2017b). Their finite element 

model used the full geometric and material nonlinear analysis capabilities of ABAQUS. The cross-

section was modeled using S4 R shell elements with 20 elements through the web depth and 12 

elements across the flange width. The element aspect ratio over the beam length was held to 

approximately 1.0 with the web elements. As part of their extensive study, W21x44 and W14x68 

W-shapes were modeled with 𝐶𝑏 = 1 and 𝐶𝑏 = 1.3 end-moment conditions. To match their 

analysis conditions, the initial geometric imperfection was set to 𝐿𝑏/2000 at mid-span, bracing 

only at the supports, modulus of elasticity 𝐸 = 200 𝐺𝑃𝑎 and yield strength 𝜎𝑦 = 345 𝑀𝑃𝑎. As 

given in Fig. 4, the MASTAN2 model had 16 beam elements with continuous warping restraint 

over the entire length, except for the warping free conditions at both ends. The material model 

constants were 𝑛𝑧 = 1.5, 𝑛𝑦 = 1.2 and 𝑐𝑟 = 0.3. The 𝑴𝒛 moments in Fig. 4 were incrementally 

applied using a second-order inelastic analysis up to the limit load condition. In order to produce 

the 𝐶𝑏 = 1.3 condition, the moment on the left end was modeled using 0.5𝑴𝒛. 
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Figure 4: MASTAN2 model of uniaxial bending condition with end moment 𝑴𝒛 

 

The comparison results for the two W-shapes with 𝐶𝑏 = 1 and 𝐶𝑏 = 1.3 are given in Fig. 5. In 

general, the new model results agree very closely with the finite element results. The depth-to-

flange-width ratio for the W21x44 (𝑑/𝑏𝑓 =  3.2) and W14x68 (𝑑/𝑏𝑓 =  1.4) are quite different, 

but despite this difference the accuracy of the new model seems to be unaffected by keeping the 

material constants the same for both W-shapes. A detailed discussion on why the finite element 

results are below the AISC curves can be found in the papers by Subramanian and White (2017a, 

2017b). They proposed a reduced plateau length for 𝐿𝑝 and a smaller maximum stress level for the 

elastic LTB limit. The new material model’s results provide further substantiating evidence for 

these recommendations. 

 

The new model was also verified by comparing results with the finite element results for the biaxial 

bending condition in Fig. 6 by Pi and Trahair (1994b). To match their analysis conditions, the 

10UB29 steel I-section (BHP 1972) was modeled with an initial geometric imperfection of 

𝐿𝑏/1000 at mid-span, bracing only at the supports, modified slenderness 𝜆 = 1.029, modulus of 

elasticity 𝐸 = 200 𝐺𝑃𝑎 and yield strength 𝜎𝑦 = 250 𝑀𝑃𝑎. The MASTAN2 model had 8 beam 

elements with continuous warping restraint over the entire length, except for the warping free 

conditions at both ends. The material model constants were the same as the previous verification 

study with 𝑛𝑧 = 1.5, 𝑛𝑦 = 1.2 and 𝑐𝑟 = 0.3. Using a second-order inelastic analysis, the 𝑃𝑦 load 

in Fig. 6 was incrementally applied first up to a specified magnitude, then the 𝑃𝑧 load was 

incrementally applied up to the limit load condition. Maximum moments occur at the mid-span 

with components 𝑀𝑧 = 𝑃𝑦𝐿/4 and 𝑀𝑦 = 𝑃𝑧𝐿/4. 

 

The finite element model used by Pi and Trahair (1994b) used a total Lagrangian nonlinear 

inelastic procedure with large deflection and large rotation capabilities. Their procedure assumed 

no local buckling or distortion, large deformations, material inelasticity, residual stresses, and 

initial crookedness and twist. Full details of the finite element model and method of solution are 

given in their companion paper (Pi and Trahair 1994a). 
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Figure 5: LTB comparison results for (a) W21x44 and Cb = 1; (b) W21x44 and Cb = 1.3; 

(c) W14x68 and Cb = 1; (d) W14x68 and Cb = 1.3 

 

 

Figure 6: MASTAN2 model of biaxial bending condition with mid-span loads 𝑃𝑦 and 𝑃𝑧 
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The comparison results for the biaxial bending condition of the 10UB29 are given in Fig. 5. The 

new model results agree very closely with the finite element results by Pi and Trahair (1994b) 

using the same material constants as in the previous verification study.  

 

 
Figure 7: Biaxial bending comparison results for 10UB29   

 

5. Uniaxial and Biaxial Beam Bending Study  

Following the validation studies, analyses were conducted on simply supported beams using the 

new material model with uniaxial and biaxial bending end-moment conditions as given in Fig. 8. 

W-shapes with different depth-to-flange-width ratios were used to demonstrate the differences in 

the beam capacity results for the biaxial bending conditions when applying the same percentage 

of 𝑴𝒚/𝑴𝒛 moments. The analyses consisted of modeling a W21x93 (𝑑/𝑏𝑓 =  2.6) and W12x72 

(𝑑/𝑏𝑓 =  1.0) with initial geometric imperfection of 𝐿𝑏/2000 at mid-span, bracing only at the 

supports, modulus of elasticity 𝐸 = 200 𝐺𝑃𝑎 and yield strength 𝜎𝑦 = 345 𝑀𝑃𝑎. The MASTAN2 

model had 8 beam elements with the same warping restraint and material model constants as in 

the verification studies.  

 

Figure 8: MASTAN2 model of biaxial moment condition with end moments 𝑴𝒚 and 𝑴𝒛 
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The biaxial bending conditions were modeled with both the 𝑴𝒛 and 𝑴𝒚 moments applied 

simultaneously and incrementally up to the limit load. The results in Fig. 9 indicate a significant 

difference in the biaxial bending moment responses for the two W-shapes. There is a much larger 

reduction in the capacity for the W21x93 compared with the W12x72 for the same percentage of 

𝑴𝒚/𝑴𝒛 moments. As expected, the W12x72 with its smaller depth-to-flange-width ratio 

maintained higher biaxial bending capacities. The new material model also demonstrated its ability 

to provide consistent results over a range of 𝑴𝒚/𝑴𝒛 conditions. 

 

Figure 9: Uniaxial and biaxial bending results for (a) W21x93; (b) W12x72 
 

6. Conclusions 

A new inelastic material model for W-shapes under uniaxial and biaxial beam bending conditions 

is presented and validated. The material model was developed for use with a 14-DOF beam 

element in a second-order inelastic analysis. The model is based on the actual dimensions of a 

given W-shape and allows the user to specify the residual stress ratio 𝑐𝑟 to control the initial yield 

condition and the exponent values 𝑛𝑧 and 𝑛𝑦 to control the rate of stiffness reduction. Validation 

studies compared the new model’s results with those from detailed finite element analyses, and it 

was found that even when using the same material constants for all test conditions, the new model 

provided very comparable limit load results. The biaxial end-moment study using W-shapes with 

two different depth-to-flange-width ratios provided expected and consistent results over a range of 

moment conditions. 

 

While the range of W-shapes and loading conditions were somewhat limited in this paper, the 

results indicate that the model can possibly be simplified by using a single exponent value since 

the two used in the study were so close to one another (𝑛𝑧 = 1.5 and 𝑛𝑦 = 1.2). Further research 

is needed to verify this assumption and to study the new model for other W-shape dimensional 

properties, loading and bracing conditions, and warping end restraint conditions. Nonetheless, 

based on the results of this study, the new model can provide an accurate and effective means to 

account for the inelastic behavior of I-section beams with a 14-DOF beam element to satisfy the 

provisions of Appendix 1in the AISC 360-16 Specification for Structural Steel Buildings (2016). 
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