

Proceedings of the Annual Stability Conference Structural Stability Research Council Atlanta, Georgia, April 21-24, 2020

# Flexural-torsional failure and DSM design of CFS lipped channel and rack-section columns at elevated temperatures

Antonio Albuquerque Bicelli<sup>1</sup>, Alexandre Landesmann<sup>1</sup>, Dinar Camotim<sup>2</sup>, Pedro Borges Dinis<sup>2</sup>

## Abstract

Recently, Dinis et al. (2019a,b) reported in-depth numerical investigations showing that the current Direct Strength Method (DSM) global design curve underestimates the flexural-torsional (FT) failure loads of fixed-ended cold-formed steel columns with slenderness higher than 1.5. This finding was based on the analysis of columns (i) exhibiting various cross-section shapes and geometries, and (ii) covering wide slenderness ranges. Moreover, these authors used the failure load data gathered to develop and assess the merits of a novel DSM column design curve set, aimed at improving considerably the failure load prediction for the aforementioned columns. This work extends the scope of the previous studies to cover fixed-ended cold-formed steel lipped channel and rack-section columns under elevated temperatures (up to 800 °C). The results presented and discussed consist of column FT post-buckling equilibrium paths and failure loads, obtained through geometrically and materially non-linear ANSYS shell finite element analyses - to cover a wide FT slenderness range, several room-temperature yield stresses are considered. The model prescribed in Part 1-2 of Eurocode 3 (EC3:1-2), for cold-formed steel, is adopted to describe the temperature-dependence of the steel material properties. Finally, the numerical failure loads obtained in this work, together with the numerical and experimental ones collected from the literature, are used to propose a modification of the DSM-based FT strength curve set developed by Dinis et al. (2019b), making it capable of handling FT failures under elevated temperatures. Since the merit assessment of the new strength curve set shows a visible improvement of the FT failure load prediction quality, it may be argued that it constitutes a good starting point for the search for an efficient DSM-based design approach for columns failing in FT modes at elevated temperatures.

# 1 Introduction

Cold-formed steel (CFS) structures offer very flexible design solutions, due to their exceptional fabrication adaptability, high structural efficiency (strength-to-weight ratio) and continuously lower production and erection costs. However, since many CFS members display very slender thin-walled open cross-sections, which makes them highly prone to several instability phenomena, namely local, distortional or global buckling, the current design specifications contain provisions dealing with the corresponding failures. In particular, the Direct Strength Method (DSM – *e.g.*, Camotim *et al.* 2016 or Schafer 2019), which is prescribed by the current North-American (AISI 2016), Australian/New Zealand (AS/NZS 2018) and

<sup>&</sup>lt;sup>1</sup> Civil Engineering Program, COPPE/UFRJ, Federal University of Rio de Janeiro, Brazil. <a href="mailto:</a> <a href="mailto:sizelli">sizelli</a>; alandes@coc.ufrj.br>

<sup>&</sup>lt;sup>2</sup> CERIS, Instituto Superior Técnico, Universidade de Lisboa, Portugal. <dcamotim@civil.ist.utl.pt; dinis@civil.ist.utl.pt>

Brazilian (ABNT 2010) specifications for CFS structures. It is nowadays widely accepted as the most rational approach to the design such members and its universal popularity stems also from the fact that its application requires only the knowledge of the member yield and buckling stresses. In the context of this investigation, the relevant codified nominal strength is the global one ( $f_{nG}$ ), given by

$$f_{nG} = \begin{cases} f_y \left( 0.658^{\lambda_G^2} \right) & \text{if} \quad \lambda_G \le 1.5 \\ f_y \left( \frac{0.877}{\lambda_G^2} \right) & \text{if} \quad \lambda_G > 1.5 \end{cases} \quad \text{with} \quad \lambda_G = \sqrt{\frac{\sigma_y}{f_{crG}}} \quad , \quad (1)$$

where (i)  $f_{crG}$  and  $\lambda_G$  are the column global critical buckling stress and slenderness, and (ii)  $\sigma_y$  is the material (steel) yield stress. This design curve, combining an exponential expression (Ziemian 2010) with the (lowered) Euler curve, was first included in the CFS design manual in 1996 (AISI 1996), due to the work of Peköz & Sümer (1992), who showed that the above design curve, already codified in the context of hot-rolled steel members used in buildings (AISC 1986), provided better quality estimates than that adopted at that time by the CFS community (AISI 1986). These authors based their findings on 214 test results concerning concentrically loaded CFS columns with various cross-sections (lipped channels, hat-sections, box-sections and I-sections formed by back-to-back plain channels), all exhibiting low-to-moderate global slenderness values ( $\lambda_G \leq 1.75$ ).

Recently, Dinis *et al.* (2019a,b) reported numerical investigations intended to assess the accuracy of the current DSM column global strength curve (Eq. (1)) in predicting the failure loads of fixed-ended CFS columns collapsing in major-axis flexural-torsional (FT) modes. These authors gathered a total of 1710 FT failure loads, concerning columns having (i) six cross-section shapes (plain, return lip, web-stiffened and web/flange-stiffened lipped channels, hat-sections and rack-sections), combined with various cross-section dimensions and lengths, (ii) critical-mode (FT) initial geometrical imperfections with *L*/1000 amplitude (*L* is the column length), and (iii) 5 (room temperature) yield stresses, making it possible to cover wide slenderness ranges. Based on these numerical FT failure load data, Dinis *et al.* (2019a) readily concluded that the current DSM column global design curve only provides adequate FT failure load estimates for fixed-ended columns with low-to-moderate slenderness ( $\lambda_G \leq 1.5$ ) – it considerably underestimates the FT failure loads of the most slender columns ( $\lambda_G > 1.5$ ). In fact, this underestimation was already perceptible for (i) the five lipped channel and hat-section columns with  $\lambda_G > 1.6$  considered by Peköz & Sümer (1992) and (ii) the three lipped channel columns with  $\lambda_G > 1.7$  tested, at room temperature, by Bandula Heva & Mahendran (2012) – these eight experimental FT failure loads are all visibly underestimated by the current DSM global design curve.

Following an in-depth investigation on the mechanics of FT buckling and failure in CFS columns, Dinis *et al.* (2019b) proposed a new DSM-based design approach ( $f_{nFT}$ ) involving a set of strength curves dependent on a geometric parameter  $\beta_{FT}$ , given by

$$\boldsymbol{\beta}_{FT} = \frac{I_I + I_w / A}{I_{II}} \tag{2}$$

and relating the cross-section major ( $I_I$ ) and minor ( $I_{II}$ ) moments of inertia, warping constant ( $I_w$ ) and area (A). For  $\lambda_G (\equiv \lambda_{FT}) > 1.5$ , the strength curve becomes  $\beta_{FT}$ -dependent and is defined by a general "Euler-type" expression similar to that appearing in the current curve (see Eq. (1)) – this strength curve set is defined by the expressions

$$f_{nFT} = \begin{cases} f_y \left( 0.658^{\lambda_{FT}^2} \right) & if \quad \lambda_{FT} \le 1.5 \\ f_y \left( \frac{a}{\lambda_{FT}^b} \right) & if \quad \lambda_{FT} > 1.5 \end{cases} \quad \text{with} \quad \lambda_{FT} = \sqrt{\frac{\sigma_y}{f_{crFT}}} \quad , \quad (3)$$

where the  $\beta_{FT}$ -dependence is felt through parameters *a* and *b*, which are functions of  $\beta$  given by

2

if  $\beta_{FT} \ge 21.5$ 

$$a = 0.39 \times 1.5^{b}$$
, (4)  
$$b = \begin{cases} 0.06\beta_{FT} + 0.71 & if \quad \beta_{FT} < 21.5 \\ & & . \end{cases}$$
(5)

Note that (i) in order to make a clear distinction between the current DSM global design curve (Eq. (1)) and the DSM-based strength curve set proposed by Dinis *et al.* (2019b), concerning exclusively columns failing in FT modes (Eq. (3)),  $\lambda_G$  is replaced by  $\lambda_{FT}$  in the latter, (ii) the exponential expression (also displayed in Eq. (1)) is kept in the low-to-moderate slenderness range ( $\lambda_{FT} \leq 1.5$ ), (iii) the *a* and *b* expressions (Eqs. (4)-(5)) were obtained by means of "trial-and-error curve-fitting procedures" (Dinis *et al.* 2019a,b) and, finally, (v) Eq. (1) is recovered for high  $\beta_{FT}$  values, beyond which the role played by torsion becomes negligible (*i.e.*, *a*=0.877 and *b*=2). It is still worth noting that the warping constant  $I_w$  can nowadays be easily calculated numerically, by means of freely available softwares like CUFSM (Li *et al.* 2014) or GBTUL (Bebiano *et al.* 2018).

Dinis *et al.* (2019b) also showed that the above  $\beta_{FT}$ -dependent DSM strength curve set predict very well all the available FT failure loads concerning columns with moderate or high slenderness ( $\lambda_{FT} > 1.5$ ), namely (i) the 1710 numerical ones obtained by these same authors (Dinis *et al.* 2018, 2019a,b) and (ii) the 3 experimental ones reported by Bandula Heva & Mahendran (2012). However, it remains to be assessed whether this strength curve set can also be adopted (with more or less relevant modifications) to estimate the failure loads of columns subjected to members elevated temperatures, namely those caused by fire conditions – recall that such conditions may alter substantially the steel constitutive law, namely its Young's modulus, yield strength and amount of non-linearity. In addition, Bandula Heva & Mahendran (2012)<sup>3</sup> reported that the numerical failure loads of CFS lipped channel columns subjected to uniform elevated temperatures, ranging between 400°C and 500°C, and exhibiting low-to-moderate slenderness values ( $\lambda_G \le 1.5$ ) are clearly overestimated by the current DSM column design curve, already taking into account the appropriate reduction of the steel mechanical properties – recall that the strength curve set proposed by Dinis *et al.* (2019b) only differ from the current design curve for  $\lambda_G > 1.5$ .

Therefore, the aim of this work is to present and discuss the results of an extensive numerical investigation on how accurately the available DSM design curves are capable of predicting the failure loads of CFS fixed-ended columns failing in FT modes at elevated temperatures. As done previously by Dinis *et al.* (2018, 2019a,b), all the numerical FT failure loads reported in this work (i) concern columns containing critical-mode (FT) initial imperfections with L/1000 amplitude and (ii) are obtained by means of non-linear elastic-plastic shell finite element analyses (SFEA), adopting a model often employed by the authors

<sup>&</sup>lt;sup>3</sup> More details on this extensive experimental and numerical investigation on the FT behavior and DSM design of CFS lipped channel columns under room and elevated temperatures (the latter due to fire conditions) can be found in Bandula Heva (2009).

in the past. The columns analyzed (i) exhibit lipped channel and rack cross-section shapes, (ii) display a wide variety of cross-section dimensions, lengths and room temperature yield stresses (values selected to cover wide critical slenderness ranges), and (iii) are subjected to several uniform elevated temperatures, reaching up to 800 °C. It is worth noting that some results concerning columns at room temperature have already been reported by Dinis *et al.* (2018, 2019a,b) – they are presented here for comparison proposes.

The paper begins with the column geometry selection (Section 2), carried out by means of sequences of "trial-and-error" buckling analyses and aimed at identifying lipped channel and rack-section column cross-section dimensions and lengths associated with "pure" FT buckling and failure modes. In other words, the selected columns exhibit FT critical buckling loads that are significantly lower than their local and distortional counterparts, both at room and elevated temperature. Next, in Section 3, the ANSYS (SAS 2009) shell finite element model employed to perform the geometrically and materially nonlinear analyses is briefly described and validated, by reproducing simulations reported by Bandula Heva (2009). Then, Section 4 addresses the influence of the temperature on the column elastic-plastic postbuckling behavior, failure load and associated DSM estimation - in order to cover a wide FT slenderness range, several room-temperature yield stresses are considered. The model prescribed in parte 1-2 of Eurocode 3 (EC3:1-2 - CEN 2005) is employed to describe the temperature dependence of the CFS material properties<sup>4</sup>. Finally, the numerical failure load data obtained in this work, together with other experimental and numerical values reported in the literature, are used in Section 5 to assess the merits of DSM-based FT strength curves either proposed in the past (Dinis et al. 2019b) or modified by the authors in this work. Since it is shown that such modifications improve visibly the failure load prediction quality, it may be argued that the modified strength curves constitute a good starting point for the search for an efficient DSM-based design approach for columns failing in FT modes at elevated temperatures.

# 2 Column Geometry Selection – Buckling Behavior

The first task in this work consists of carefully selecting the cross-section dimensions and lengths of the CFS lipped channel (C) and rack-section (R) fixed-ended columns to be analyzed at room and elevated temperatures. As done in previous works, the selection procedure involves sequences of "trial-and-error" buckling analyses, performed in code GBTUL (Bebiano *et al.* 2018), based on Generalized Beam Theory (GBT), which makes it possible to obtain buckling loads/stresses associated with "pure" FT modes.

The output of the above effort are the 72 C and R columns whose cross-section dimensions ( $b_w$ ,  $b_f$ ,  $b_s$ ,  $b_l$ , t – see the schematic representations included in Figs. 1(a)-(b)) and lengths are given in Table 1. This table also provides the column areas (A), major ( $I_l$ ) and minor ( $I_{II}$ ) moments of inertia, warping constants ( $I_w$ ) and  $\beta_{FT}$  parameter values – the values of these geometrical properties were calculated on the basis of the cross-section mid-line dimensions.

The illustrative signature curves depicted in Figs. 1(a)-(b) concern the C<sub>1</sub> and R<sub>1</sub> column cross-section dimensions and provide the variation of  $P_{cr.T}$  (elastic critical buckling load at temperature *T*) with the columns length *L* (logarithmic scale) for three different temperatures: 20/100 °C (*i.e.*, room temperature), 400 °C and 600 °C. The EC3-1.2 (2005) constitutive model, presented in Section 3.1, is adopted and all buckling loads were calculated for  $E_{20}=210$  GPa (steel Young's modulus at room temperature) and v=0.3 (Poisson's ratio, deemed independent from the temperature). Moreover, the 6 column lengths considered

<sup>&</sup>lt;sup>4</sup> Although AISI (2016) provides detailed specifications for the structural analysis and design of steel members under fire conditions (see Appendix 4), including values to account for the deterioration in strength and stiffness of structural steel at elevated temperatures (see Table A-4.2.1), there is no information about the stress-strain-temperature curve (model) for cold-formed steel under these (elevated temperatures) conditions. Thus, the EC3:1-2 relationship for CFS is adopted in this work.

| Table 1: Cross-section geometry, | cross-sectional geome  | etrical properties ar            | nd lengths of the          | he selected lipped              | channel       |
|----------------------------------|------------------------|----------------------------------|----------------------------|---------------------------------|---------------|
| (C) and rack-section (R) columns | failing in FT modes (l | $b_w, b_f, b_s, b_l, t, A, L, L$ | $I_I, I_{II}, I_w$ , value | s in <i>mm, mm</i> ², <i>mm</i> | $(4, mm^{6})$ |

| Column                | $b_w$ | $b_f$ | $b_s$ | $b_l$ | t   | Α      | <i>I</i> <sub>1</sub> (×10 <sup>4</sup> ) | <i>I</i> <sub>II</sub> (×10 <sup>4</sup> ) | <i>I</i> <sub>W</sub> (×10 <sup>6</sup> ) | $\beta_{FT}$ | $L_1$ | $L_2$ | $L_3$ | $L_4$ | $L_5$ | $L_6$ |
|-----------------------|-------|-------|-------|-------|-----|--------|-------------------------------------------|--------------------------------------------|-------------------------------------------|--------------|-------|-------|-------|-------|-------|-------|
| C1                    | 60    | 50    | 11    | -     | 1.2 | 224.64 | 14.67                                     | 9.35                                       | 79.54                                     | 5.36         | 1700  | 2380  | 3060  | 3500  | 4400  | 5100  |
| $C_2$                 | 100   | 60    | 10    | -     | 2   | 464    | 78.55                                     | 21.38                                      | 405.01                                    | 7.76         | 2380  | 2700  | 3060  | 3500  | 4400  | 5100  |
| C <sub>3</sub>        | 140   | 70    | 10    | -     | 3   | 864    | 274.02                                    | 50.09                                      | 1751.7                                    | 9.52         | 3000  | 3500  | 4000  | 4500  | 5000  | 5500  |
| $C_4$                 | 150   | 100   | 10    | -     | 4   | 1416   | 543.62                                    | 164.38                                     | 6431.4                                    | 6.07         | 4000  | 4500  | 5000  | 5500  | 6000  | 6500  |
| C <sub>5</sub>        | 80    | 45    | 11    | -     | 1.6 | 296.96 | 31.59                                     | 8.26                                       | 110.66                                    | 8.34         | 2500  | 2500  | 3000  | 3500  | 4000  | 4500  |
| <b>R</b> <sub>1</sub> | 80    | 50    | 15    | 20    | 1   | 245    | 24.9                                      | 13.13                                      | 299.67                                    | 11.21        | 3500  | 4200  | 4900  | 5600  | 6300  | 7000  |
| $R_2$                 | 150   | 110   | 23    | 20    | 2.4 | 1065.6 | 411.86                                    | 213.38                                     | 13489                                     | 7.86         | 5500  | 6300  | 7000  | 7800  | 8600  | 9500  |
| <b>R</b> <sub>3</sub> | 67    | 35    | 10    | 20    | 0.8 | 154.4  | 10.9                                      | 4.87                                       | 66.04                                     | 11.02        | 3000  | 3500  | 4000  | 4500  | 5000  | 5500  |
| $R_4$                 | 120   | 60    | 20    | 30    | 1.5 | 498.75 | 110.85                                    | 42.65                                      | 1962                                      | 11.82        | 5500  | 6000  | 6500  | 7000  | 7500  | 8000  |
| <b>R</b> <sub>5</sub> | 110   | 100   | 20    | 15    | 2   | 740    | 157.45                                    | 117.27                                     | 4395.2                                    | 6.41         | 6000  | 6500  | 7000  | 7500  | 8000  | 8500  |



Figure 1. Variation of  $P_{cr,T}$  with L for T= 20/100, 400, 600 °C: (a) C<sub>1</sub> and (b) R<sub>1</sub> columns (EC3-1.2 constitutive model)

 $(L_{I}-L_{6})$  are indicated on the various signature curves and figures showing the critical (FT) buckling modes of the C<sub>1</sub> and R<sub>1</sub> columns with length  $L_{I}$  (see Table 1) are also provided. It is worth noting that a signature curve associated with an elevated temperature (400 °C or 600 °C) is obtained, from its room-temperature counterpart, through a "vertical translation" whose magnitude depending only on the Young's modulus erosion cause by the temperature rise<sup>5</sup> – therefore, the flexural-torsional buckling loads  $P_{crFT,T}$  correspond to the same length ( $L_{I-6}$ ) for each temperature value.

## **3** Numerical Model

The column flexural-torsional post-buckling equilibrium paths and failure loads ultimate were determined by means of ANSYS (2009) geometrically and materially non-linear, employing models similar to those used in recent studies involving CFS columns subjected to elevated temperatures (*e.g.*, Landesmann *et al.* 2019). The columns were discretized into SHELL181 elements (ANSYS nomenclature – 4-node shear

<sup>&</sup>lt;sup>5</sup> Naturally, the Young's modulus reduction factor  $k_e$ , whose variation with the temperature *T* is illustrated in Fig. 2(a), makes it possible to quantify the decrease in the critical buckling load  $P_{crT}$  corresponding to a given column length.

deformable thin-shell elements with six degrees of freedom per node and full integration). The analyses were performed by means of an incremental-iterative technique combining Newton-Raphson's method with an arc-length control strategy. They simulate the response of columns subjected to an uniform temperature distribution (*i.e.*, they are deemed engulfed in flames, thus sharing the surrounding air temperature – Landesmann & Camotim 2011) and subsequently axially compressed up to failure – steady state analyses providing failure loads. Convergence studies (Dinis *et al.* 2019a,b) showed that  $5mm \times 5mm$  finite element meshes provide accurate results, while involving a reasonable computational effort.

The column fixed-ended support conditions are modeled by attaching the column end cross-sections to rigid plates with all the rotations and the bending translations restrained – the axial translations are free, thus enabling the load application. The axial compression is applied by means of point loads acting on the rigid end plate points corresponding to the cross-section centroid. The above loads are always increased in small increments, by means of the ANSYS automatic load stepping procedure. All the columns analyzed contain critical-mode (FT) initial geometrical imperfections with amplitude L/1000, a value often adopted in numerical simulations. The critical buckling mode shapes were determined by means of preliminary ANSYS buckling analyses, performed with the shell finite element mesh employed to carry out the subsequent post-buckling analyses – this procedure makes it very easy to "transform" the buckling analysis output into a non-linear analysis input. It is still worth noting that strain-hardening, residual stress and rounded corner strength effects were disregarded in this work, since their combined influence on the column failure load has been shown to be negligible by several authors (*e.g.*, Ellobody & Young 2005).

#### 3.1 Steel Material Behavior

The multi-linear stress-strain curve available in ANSYS is adopted to model the steel material behavior corresponding to several yield stresses. The cold-formed steel constitutive law at elevated temperature adopted in this work is defined by the analytical expressions prescribed in EC3:1-2 CEN 2005). Fig. 2(a) makes it possible to compare the temperature dependence of the reduction factors applicable to the CFS Young's modulus ( $k_e=E_T/E_{20}$ ), nominal yield stress ( $k_y=\sigma_yT/\sigma_{y20}$ ) and proportionality limit stress ( $k_p=\sigma_pT/\sigma_{p20}$ ), which are tabulated in EC3:1-2<sup>6</sup>. As for Fig. 2(b), it illustrates the qualitative



**Figure 2.** (a) Variation of the reduction factors  $k_e$ ,  $k_y$ ,  $k_p$  with the temperature for  $T \leq 800$  °C and (b) cold-formed steel stress-strain curves  $\sigma_T / \sigma_{y20}$  vs.  $\varepsilon$  ( $\varepsilon \leq 2\%$ ) for T = 20/100-400-600 °C – as prescribed by the EC3:1-2 model

<sup>&</sup>lt;sup>6</sup> For T=20/100-200-300-400-500-600-700-800 °C, EC3:1-2 prescribes  $k_p=1.0-0.807-0.613-0.42-0.36-0.18-0.075-0.05$ ,  $k_y=1.0-0.89-0.78-0.65-0.53-0.3-0.13-0.07$  and  $k_E=1.0-0.9-0.8-0.7-0.6-0.31-0.13-0.09$ .

differences between the stress-strain curves prescribed by EC3:1-2 for T=20/100 °C (room temperature), T=400 °C and T=600 °C –  $\sigma_T/\sigma_{y20}$  vs.  $\varepsilon$ , where the applied stress at a given temperature ( $\sigma_T$ ) is normalized with respect to the room temperature yield stress  $\sigma_{y20}$ . Note that the stress-strain curve non-linearity increases significantly with the temperature (for T=20/100 °C, the constitutive law is bi-linear – elastic-perfectly plastic material). The stress-strain curves prescribed in EC3:1-2 are divided into three regions, associated with distinct strain ranges<sup>7</sup>. Note that the stress-strain curve proportionality limit strain ( $\varepsilon_{pT}=\sigma_{pT}/E_T$ ) and non-linear shape are considerably influenced by the temperature.

For elevated temperatures, the first part of the well-defined yield plateau exhibited by the T=20/100 °C curve is replaced by a strain-hardening region that becomes gradually more pronounced as the temperature rises. The stress-strain curve (i) is linear elastic, with slope  $E_T (E_{20}=210 \, GPa)$ , up to the proportionality limit stress  $\sigma_{pT}$ , then (ii) becomes elliptic in the transition between the elastic and plastic ranges, up to the effective yield stress  $\sigma_{yT}$ , occurring at  $\varepsilon_{yT} (\sigma_{yT}$  is taken as the 0.2% proof strength) and accounting for kinematic strain-hardening, and (iii) ends with a perfectly flat yield plateau, up to the limit strain  $\varepsilon_{uT}=0.15$  – in all cases, Prandtl-Reuss's plasticity model (von Mises yield criterion and associated flow rule) is adopted. Finally, since the flexural-torsional post-buckling analyses carried out involve large inelastic strains, the nominal (engineering) static stress-strain curve is replaced by a relation between the true stress and the logarithmic plastic strain, which reads

$$\sigma_{T} = \begin{cases} \varepsilon \cdot E_{T} & \text{for } \varepsilon \leq \varepsilon_{pT} \\ \sigma_{pT} - c + (b/a) \Big[ a^{2} - (\varepsilon_{yT} - \varepsilon)^{2} \Big]^{0.5} & \text{for } \varepsilon_{pT} < \varepsilon < \varepsilon_{yT} \\ \sigma_{yT} & \text{for } \varepsilon_{yT} \leq \varepsilon \leq \varepsilon_{uT} \\ a^{2} = (\varepsilon_{yT} - \varepsilon_{pT}) (\varepsilon_{yT} - \varepsilon_{pT} + c/E_{T}), \ b^{2} = c (\varepsilon_{yT} - \varepsilon_{pT}) E_{T} + c^{2}, \\ c = \frac{(\sigma_{yT} - \sigma_{pT})^{2}}{(\varepsilon_{yT} - \varepsilon_{pT}) E_{T} - 2(\sigma_{yT} - \sigma_{pT})} \end{cases}$$

$$(6)$$

### 3.2 Validation Studies

In order to validate the use of the ANSYS shell finite element model to determine the FT post-buckling behavior and strength of CFS columns at room and elevated temperatures, a fraction of the numerical simulations reported by Bandula Heva & Mahendran (2012) is first replicated – it concerns lipped channel columns experimentally tested by these authors. Figures 3(a)-(b), taken from the above publication, provide an overall view of the experimental set-up that was specially designed and built at the Queensland University of Technology (QUT) Structural Laboratory, comprising mainly (i) a reaction frame (crosshead), (ii) a three-segment furnace, (iii) a furnace temperature control system and (iv) a bottom hydraulic loading system (see Fig. 3(b)).

Table 2 provides the data concerning the columns considered in the validation study, namely the mean values of their dimensions, lengths, steel grades and maximum initial displacements (expressed as a ratio of column length) adopted by Bandula Heva & Mahendran (2012). It is worth noting that, besides the novel experimental investigation involving a large number of column specimens, these authors also performed an extensive numerical investigation at room and elevated temperatures.

<sup>&</sup>lt;sup>7</sup> Although the EC3:1-2 model further extends the stress-strain relationship, to include strain-hardening, for temperatures below 400 °C, this effect is not considered in this work (such strain-hardening is negligible for temperatures above 400 °C).



**Figure 3.** Overall view of the experimental test set-up used by Bandula Heva & Mahendran (2012): (a) three-segment furnace and associated temperature control system, and (b) bottom hydraulic loading system

**Table 2:** Columns considered in the validation study: (i) geometries and maximum initial displacement amplitudes, and (ii) comparison between the numerical failure loads reported by Bandula Heva & Mahendran (2012) and obtained in this work

| $T$ ( $^{o}C$ ) | $b_w$ (mm) | $b_f$ (mm) | $b_l$ (mm) | t<br>(mm) | L<br>(mm) | $\sigma_{y20}$<br>(MPa) | Imperfection | P <sub>u.BHM</sub><br>(kN) | $P_{u.TW}$<br>(kN) | $\frac{P_{u.BHM} - P_{u.TW}}{P_{u.BHM}}$ |
|-----------------|------------|------------|------------|-----------|-----------|-------------------------|--------------|----------------------------|--------------------|------------------------------------------|
| 20              | 74.92      | 49.96      | 15.00      | 1.95      | 1740      | 271                     | L/3860       | 90.7                       | 90.1               | 0.6%                                     |
| 200             |            |            |            |           |           |                         |              | 84.3                       | 76.2               | 9.7%                                     |
| 300             |            |            |            |           |           |                         |              | 62.4                       | 54.8               | 12.2%                                    |
| 400             |            |            |            |           |           |                         |              | 41.1                       | 39.9               | 2.9%                                     |
| 500             |            |            |            |           |           |                         |              | 26.6                       | 28.6               | -7.4%                                    |
| 600             |            |            |            |           |           |                         |              | 19.0                       | 19.1               | -0.4%                                    |
| 700             |            |            |            |           |           |                         |              | 10.9                       | 10.7               | 1.9%                                     |
| 20              | 74.88      | 49.82      | 14.81      | 1.88      | 1740      | 515                     | L/3577       | 129.0                      | 126.3              | 2.1%                                     |
| 200             |            |            |            |           |           |                         |              | 110.0                      | 108.8              | 1.1%                                     |
| 300             |            |            |            |           |           |                         |              | 96.4                       | 92.5               | 4.1%                                     |
| 400             |            |            |            |           |           |                         |              | 78.0                       | 73.6               | 5.7%                                     |
| 500             |            |            |            |           |           |                         |              | 53.4                       | 51.3               | 3.8%                                     |
| 600             |            |            |            |           |           |                         |              | 20.5                       | 18.2               | 11.3%                                    |
| 700             |            |            |            |           |           |                         |              | 11.3                       | 11.4               | -0.9%                                    |
| 20              | 57.79      | 36.91      | 8.82       | 0.95      | 1740      | 615                     | L/3437       | 25.4                       | 25.4               | -0.1%                                    |
| 200             |            |            |            |           |           |                         |              | 22.5                       | 22.6               | -0.7%                                    |
| 300             |            |            |            |           |           |                         |              | 19.3                       | 19.7               | -1.9%                                    |
| 400             |            |            |            |           |           |                         |              | 15.8                       | 16.0               | -1.2%                                    |
| 600             |            |            |            |           |           |                         |              | 6.2                        | 6.5                | -5.7%                                    |
| 700             |            |            |            |           |           |                         |              | 4.6                        | 4.3                | 6.5%                                     |

The column analyses (i) were performed in the code ABAQUS (adopting discretizations into fine S4R shell finite element meshes), (ii) accounted for the influence of residual stresses, (iii) included critical-

mode (FT) initial geometrical imperfections with the measured amplitudes and (iv) considered steel material properties characterized by  $\sigma_{y20}$ =271-515-615*MPa*, *E*=188-206-205*GPa* and *v*=0.3, adopting experimentally-based Ramberg-Osgood type constitutive models previously proposed by Ranawaka & Mahendran (2009) and Kankanamge (2009) for columns made of cold-formed steel sheets with nominal thickness 0.95 *mm* (G250 steel grade) and 1.90-1.95 *mm* (G450 and G550 steel grades). As for the numerical analyses carried out in this work, they are similar to those performed by Bandula Heva & Mahendran (2012), except for the fact that (i) the ANSYS code was used (instead of ABAQUS) and (ii) the residual stresses were disregarded. The observation of Table 2 reveals that the percentage differences between the column failure loads reported by Bandula Heva & Mahendran (2012) (*P*<sub>*u*,*BHM*</sub>) and obtained in this work (*P*<sub>*u*,*TW*</sub>), concerning columns with three yield stresses and subjected to different temperatures, never exceed 7.4% and have a mean value equal to 2.76%. In view of this quite good correlation, it seems fair argue that the shell finite element model employed in this work may be deemed adequately validated.

#### 4 Flexural-Torsional Response under Elevated Temperature

## 4.1 Elastic-Plastic Post-Buckling Behavior

The influence of the (elevated) temperature on the FT elastic-plastic post-buckling behavior and failure load of cold-formed steel C and R columns is addressed in this section. Figs. 4(a)-(b) show the equilibrium paths  $P/P_{crFT}$  vs.  $\theta$ , where  $P_{crFT}=Af_{crFT}$  and  $\theta$  is the major-axis bending rotation of the mid-span cross-section, of the C<sub>2</sub> and R<sub>2</sub> columns with the L<sub>3</sub> lengths (corresponding to  $\lambda_{FT}=1.5$ ) subjected to the temperatures T=20/100-200-300-400-500-600-700-800 °C. The white circles identify the failure loads  $P_{uT}=Af_{uT}$  and the room temperature elastic curves are also shown for comparative purposes. As for Figs. 5(a)-(b), they display the deformed configurations and von Mises stress contours, at collapse ( $P=P_{uT}$ ), of the columns subjected to the temperatures T=20/100-300-500-700 °C – in order to ensure a better visualization, only half of each column is displayed. The observation of these post-buckling results prompts the following remarks:

- (i) Since the  $C_2$  and  $R_2$  column behaviors are, qualitatively, virtually identical, the remarks included in the next items are valid for both of them.
- (ii) Naturally, the various column equilibrium paths "move down" as the temperature rises, since the strength and failure load decrease. The drop is particularly large between 500 and 600 °C.
- (iii) Since the thermal action effects are negligible (uniform temperature and free-to-deform columns), the FT failure modes do not depend on the temperature and, therefore, are virtually identical for all the columns analyzed. The columns always collapse after the full yielding of the top web-flange corners at the mid-height region. However, note that, at the highest temperatures ( $T > 500 \,^{\circ}C$ ), the spread of plasticity in the columns mid-height region is less pronounced, which stems from the temperature dependence of the stress-strain curve shape recall that  $k_p$  drops significantly for temperatures higher than 500  $^{\circ}C$ . Quantitatively speaking, the stresses obviously decrease as the temperature rises and continuously erodes the steel material behavior.
- (iv) As already mentioned, the equilibrium paths of the columns subjected to temperatures  $T \ge 600 \,^{\circ}C$  are clearly below the remaining ones, this reflecting the sudden increase in the rate of the steel material behavior degradation occurring between 500 and 600  $^{\circ}C$ . This is felt mostly via the proportionality limit strain and smoothness of the elliptic transition between the elastic and plastic ranges (see Figs. 2(a)-(b)). For  $T \ge 600 \,^{\circ}C$ , the steel stress-strain curve exhibits again a well-defined yield plateau.
- (v) No clear trend was observed concerning the influence of the temperature, geometry or yield stress on the amount of elastic-plastic strength reserve and ductility prior to failure.



**Figure 4.** (a)  $C_2(L_3)$  and (b)  $R_2(L_3)$  columns flexural-torsional post-buckling equilibrium paths for  $\lambda_{FT}$ =1.5 and temperatures *T*=20/100-200-300-400-500-600-700-800 °*C* 



**Figure 5.** (a)  $C_2(L_3)$  and (b)  $R_2(L_3)$  columns deformed configurations and von Mises stress contours at collapse, for  $\lambda_{FT}=1.5$  and temperatures T=20/100-300-500-700 °C

## 4.2 Failure Load Data

This section presents the output of a parametric study carried out to gather the failure load data that will be used to develop and assess the merits of a DSM-based design approach intended to handle column FT failures under elevated temperatures. A total of 2400 columns are analyzed, corresponding to all possible combinations of (i) the 60 geometries (cross-section dimensions and lengths) defined in Table 1, (ii) 8 uniform temperatures (T=20/100-200-300-400-500-600-700-800°C), intended to simulate fire conditions, and (iii) 5 room temperature yield stresses ( $\sigma_{v20}=75-150-300-450-600 MPa$ ), which enable covering wide FT slenderness ranges, comprised between 0.42 and 4.0. The numerical failure loads obtained in this parametric study are given in 25 tables included in Annex A: Tables A1.1 to A5.5 – the tables are divided in five sets (Table set A1 to A5), each one containing five tables. Each table set concerns all the columns with two cross-sections considered in this word (one C and one R, both sharing the same "order" – see Table 1) and their six lengths – the tables belonging to the one set only differ in the room temperature yield stress  $\sigma_{v20}$ . The tables also include several values related to the DSM-based prediction of the numerical failure loads that are addressed in Section 5. Figure 6 plots, against the slenderness  $\lambda_{FTT} = (\sigma_{vT}/f_{crFTT})^{0.5}$  and for each temperature value, the ratios between the column ultimate strengths and yield stresses  $(f_{uT}/\sigma_{yT})$  concerning (i) the 2400 columns analyzed in this work and (ii) the numerical (312) and experimental (39) values reported by Bandula Heva & Mahendran (2012), solely for lipped channel columns. The joint observation of these plots makes leads the following conclusions:

- (i) Regardless of the temperature, the  $f_{uT}/\sigma_{yT}$  vs.  $\lambda_{FTT}$  "clouds" follows the trend of "Winter-type" strength curves, even if there exists some "vertical dispersion" along the whole slenderness range considered. As previously reported by Dinis *et al.* (2018, 2019a,b), in the context of column FT failures at room temperature, the R columns (black dots) exhibit lower  $f_{uT}/\sigma_{yT}$  values than the C ones (white dots) this is clearly visible in the whole FT slenderness range and for all temperatures.
- (ii) All  $f_{uT}/\sigma_{yT}$  values concerning the C and R columns with low-to-moderate slenderness ( $\lambda_{FT.T} \le 1.5$ ) at elevated temperatures ( $T > 100 \,^{\circ}$ C) are below those concerning the same columns at room/moderate temperatures ( $T \le 100 \,^{\circ}$ C). This is not perceptible in the moderate and high FT slenderness ranges ( $\lambda_{FT.T} > 1.5$ ). Moreover, the drop caused by the temperature increase does not follow the "logical" temperature sequence, *i.e.*, the decrease with the temperature is not monotonic. Indeed, the reduction is ordered in the sequence  $T=20/100-200-300-800-400-700-500-600 \,^{\circ}C$  (the "out of sequence" values are underlined). This unexpected finding has no obvious mechanical explanation, on the basis of the EC3:1-2 CFS temperature-dependence constitutive model, and must be investigated.
- (iii) The numerical (yellow diamonds) and experimental (yellow triangles) values reported by Bandula Heva & Mahendran (2012), involving only lipped channel columns at temperatures up to 700 °C, also align along a "Winter-type" curves and "mingle" fairly well with those obtained in this work. Nevertheless, they are a bit higher and exhibit more "vertical dispersion", specially the experimental ones. Recall also that the numerical ultimate strengths were obtained with experimentally-based Ramberg-Osgood constitutive models, which are quite different from the EC3:1-2 one adopted in this work. This issue will be further addressed in Section 5.
- (iv) The above results are promising with respect to the possibility of developing an efficient (safe and reliable) DSM-based design approach to estimate the FT failure loads of columns subjected to elevated temperatures. Nevertheless, such results also show very clearly that the FT failure load predictions for columns at room and elevated temperatures must be handled separately in the low-to-moderate slenderness range (at least when adopting the EC3:1-2 temperature-dependence model) the DSM design of C and R columns failing in FT modes at elevated temperatures is addressed next.



**Figure 6.** Plots  $f_{uT}/\sigma_{yT}$  vs.  $\lambda_{FT,T}$  concerning the failure loads obtained in this work and reported by Bandula Heva & Mahendran (2012) for the temperatures  $T=20/100-200-300-400-500-600-700-800 \ ^{\circ}C$ 

## **5** DSM Design at Elevated Temperatures

The DSM-based prediction of the FT failure loads gathered in the previous section, concerning C and R columns at elevated temperatures, is addressed in this section. The first step consist of assessing the adequacy of the available strength curves, developed in the context of room temperature, namely (i) the current DSM global design curve, and (ii) the FT strength curve proposed by Dinis *et al.* (2019b), defined in Eqs. (1) and (3)-(5), respectively. Naturally, these strength curves must include the temperature effects associated with the EC3:1-2 constitutive, through the FT buckling ( $f_{crFT}$ ) and yield ( $\sigma_{yT}$ ) stresses. This approach was already explored by other researchers, namely Bandula Heva & Mahendran (2012) and Landesmann *et al.* (2019) (for columns buckling and failing in FT and distortional modes, respectively), but always involving solely the currently codified DSM design curves.

The influence of the temperature on  $f_{crFT}$  is felt through the Young's modulus, which decreases as the temperature rises. Therefore, the modification of Eqs. (1) and (3) consists of replacing  $f_{crFT}$  and  $\sigma_{y=\sigma_{y20}}$  by

 $f_{crFT,T}$  and  $\sigma_{yT}$ , which implies that  $\lambda_{FT}$  also varies with  $T(\lambda_{FT,T})$ . Then, the nominal ultimate strengths of the CFS columns failing in FT modes are given, respectively, by the expressions

$$f_{nG,T} = \begin{cases} f_{yT} \left( 0.658^{\lambda_{FT,T}^{2}} \right) & \text{if} \quad \lambda_{FT,T} \leq 1.5 \\ f_{yT} \left( \frac{0.877}{\lambda_{FT,T}^{2}} \right) & \text{if} \quad \lambda_{FT,T} > 1.5 \end{cases} , \quad (7)$$

$$f_{nFT,T} = \begin{cases} f_{yT} \left( 0.658^{\lambda_{FT,T}^{2}} \right) & \text{if} \quad \lambda_{FT,T} \leq 1.5 \\ f_{yT} \left( \frac{a}{\lambda_{FT,T}^{b}} \right) & \text{if} \quad \lambda_{FT,T} > 1.5 \end{cases} , \quad (8)$$

where  $\lambda_{FT,T} = (\sigma_{yT}/f_{crFT,T})^{0.5}$  and  $\sigma_{yT}$  and  $f_{crFT,T}$  are the yield and FT buckling stresses at a given (elevated) temperature *T*. Parameters *a* and *b* are still given by the same functions of the geometric parameter  $\beta_{FT}$  (see Eqs. (4)-(5)) and, therefore, are independent of the temperature.

The plots shown in Fig. 7 make it possible to compare the (i)  $f_{uT}/\sigma_{yT}$  values previously displayed in Fig. 6 with (ii) the available DSM FT strength curves, including the temperature effects (black and red solid lines, respectively), for the temperatures T=20/100-200-300-400-500-600-700-800 °C. Moreover, Tables A1.1 to A5.5, included in Annex A, provide the values of the ultimate strength ratios  $f_{uT}/f_{nG.T}$  and  $f_{uT}/f_{nFT.T}$  for the columns numerically analyzed in this work. As for Figs. 8 and 9, they plot, against  $\lambda_{FT.T}$ , all the  $f_{uT}/f_{nG.T}$  and  $f_{uT}/f_{nFT.T}$  values, enabling a quick and visual quantitative assessment of the quality (accuracy and safety) of the ultimate strength predictions provided by the DSM strength curves. The  $f_{uT}/f_{nG.T}$  and  $f_{uT}/f_{nFT.T}$  statistical indicators (averages, standard deviations and maximum/minimum values) of the whole set of columns gathered in this work are given in Tables 3 to 5, together with the numbers of "clearly unsafe" ultimate strength predictions, in the sense that  $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ . The observation of the results presented in these figures and tables prompts the following comments:

- (i) Concerning the ultimate strengths at room/moderate temperatures ( $T \le 100$  °C), it is observed that the most slender columns ( $\lambda_{FTT} > 1.5$ ) are visibly underestimated by the current DSM design curve the  $f_{uT}/f_{nGT}$  average, standard deviation, maximum and minimum values equal (i<sub>1</sub>) 1.44-0.26-2.76-1.0, for the columns analyzed in this work (see Table 3), (i<sub>2</sub>) 1.37-0.24-1.72-1.16, for the columns tested by Bandula Heva & Mahendran (2012) (see Table 4), and (i<sub>3</sub>) 1.29-0.15-1.76-1.02, for the columns numerically analyzed by these authors (see Table 5). Only the stockier column ( $\lambda_{FTT} \le 1.5$ ) ultimate strengths are predicted accurately the  $f_{uT}/f_{nGT}$  statistical indicators are equal to 1.06-0.03-1.15-0.99, 1.14-0.02-1.17-1.11 and 1.09-0.02-1.13-1.03, as displayed by Tables 3, 4 and 5, respectively.
- (ii) Similar findings were reported by Dinis *et al.* (2019b), on the basis of the numerical failure load data gathered by them, and prompted the proposal of the strength curve set defined in Eqs. (3)-(5). It is readily observed that the ultimate strength prediction quality improves substantially for  $\lambda_{FTT} > 1.5$ , as attested by the  $f_{uT}/f_{nFTT}$  average, standard deviation and maximum/minimum values: 1.05-0.03-1.15-0.92, 1.03-0.03-1.06-1.00 and 1.00-0.04-1.16-0.90, respectively (see Tables 3 to 5).
- (iii) Concerning the ultimate strength predictions yielded by Eqs. (7) and (8) for the columns subjected to elevated temperatures ( $T \ge 200$  °C), it is observed the only safe and reasonably accurate ones are the  $f_{nFTT}$  values in the moderate and high slenderness range ( $\lambda_{FTT} > 1.5$ ) and regardless of the temperature.



Figure 7. Comparison between the  $f_{\mu T}/\sigma_{vT}$  values and the DSM FT strength curves (T=20/100-200-300-400-500-600-700-800°C)

Thus, it is concluded that the DSM-based strength curve set defined in Eq. (8) constitutes an efficient design approach for columns such that  $\lambda_{FTT} > 1.5$ , both at room/moderate and elevated temperatures – see the red solid lines in Fig 7.

- (iv) On the other hand, most of the ultimate strengths concerning columns such that  $\lambda_{FTT} \le 1.5$  are visibly overestimated by the available DSM design curve (note that  $f_{nGT}$  and  $f_{nFTT}$  coincide for  $\lambda_{FTT} \le 1.5$ ).
- (v) The observation of the  $f_{uT}/f_{nG.T}$  vs.  $\lambda_{FT.T}$  and  $f_{uT}/f_{nFT.T}$  vs.  $\lambda_{FT.T}$  plots, depicted in Figs. 8 and 9, confirms that several ultimate strength predictions are excessively unsafe for the stockier columns subjected to temperatures exceeding 100 °C ( $T \ge 200$  °C) the numbers of such predictions increase with *T*. Indeed, the  $f_{uT}/f_{nG.T}$  and  $f_{uT}/f_{nFT.T}$  indicators provided in Table 3 show that the number of "clearly unsafe" ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe" ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe" ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe" ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe" ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$  or  $f_{uT}/f_{nFT.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength predictions ( $f_{uT}/f_{nG.T} < 0.95$ ) varies between 35 (T = 200 °C unsafe") ultimate strength pr



Figure 8.  $f_{uT}/f_{nGT}$  vs.  $\lambda_{FT,T}$  plots for all the available column ultimate strengths (T=20/100-200-300-400-500-600-700-800 °C)

25% of 140) and 119 (T=700 °C – 86% of 139). Note that, the above overestimation is slightly different for C and R columns – recall that R columns exhibit slightly lower FT ultimate strengths than the C ones (compare the black and white dots in Figs. 8 and 9).

(vi) The ultimate strength prediction quality is not significantly affected by the steel constitutive model (stress-strain-temperature curves), since, in general, the estimates of the numerical ultimate strengths reported by Bandula Heva & Mahendran (2012) "mingle" quite well with those obtained in this work. However, the ultimate strengths of the columns with  $\lambda_{FT,T} \leq 1.5$  subjected to  $T=600 \,^{\circ}C$  and  $T=700 \,^{\circ}C$  are almost perfectly predicted by Eqs. (7) or (8), in contrast with the overestimations observed for the ultimate strengths of similar columns analyzed in this work. This is probably be due to the distinct steel constitutive models used – recall that Bandula Heva & Mahendran (2012) employed different constitutive models for the G250, G450 and G550 steel grades.



Figure 9.  $f_{uT}/f_{nFT.T}$  vs.  $\lambda_{FT.T}$  plots for all the available column ultimate strengths (T=20/100-200-300-400-500-600-700-800 °C)

- (vii) Virtually all the experimental ultimate strengths reported by Bandula Heva & Mahendran (2012) concerning columns such that  $\lambda_{FT.T} \leq 1.5$  are safely and reasonably accurately predicted by Eqs. (7) and (8), identical for this slenderness range. Indeed, the  $f_{uT}/f_{nG.T}$  or  $f_{uT}/f_{nFT.T}$  average, standard deviation and maximum/minimum values vary between 1.10 (300 °C) and 1.24 (500 °C), 0.02 (20 °C) and 0.18 (500 °C), 1.17 (20 °C) and 1.51 (500 °C), 1.01 (300 °C) and 1.13 (400 °C), respectively (see Table 4).
- (viii)In order to quantify the impact of the temperature-dependent steel constitutive model on the column FT ultimate strength, one single column (column C<sub>2</sub> with length  $L_3$ ) is analyzed for yield stresses such that  $\lambda_{FT.20}=0.75$ -1.5-2.5, subjected to temperatures T=20-300-500-700 °C and considering the three steel constitutive models (EC3:1-2, G250, G450 and G550). Fig. 10 compares the  $f_{uT}/\sigma_{yT}$  values obtained (also given in Table 6) with Eq. (8) and shows that there is little difference between the  $f_{uT}/\sigma_{yT}$  values obtained with the four steel constitutive models for  $\lambda_{FT.20}=1.5$ -2.5, regardless of the

| Т          | (°C)             | 20/  | 100  | 20   | 00   | 30   | 00   | 40   | 00   | 50   | 00   | 60   | 00   | 70   | 00   | 8    | 00   |
|------------|------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1          | $\lambda_{FT,T}$ | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 |
|            | n                | 139  | 161  | 140  | 160  | 142  | 158  | 147  | 153  | 151  | 149  | 142  | 158  | 139  | 161  | 163  | 137  |
|            | Avr              | 1.06 | 1.44 | 0.99 | 1.37 | 0.96 | 1.40 | 0.89 | 1.35 | 0.90 | 1.34 | 0.87 | 1.35 | 0.86 | 1.36 | 0.91 | 1.30 |
| T          | SD               | 0.03 | 0.26 | 0.04 | 0.25 | 0.04 | 0.26 | 0.06 | 0.25 | 0.05 | 0.24 | 0.06 | 0.26 | 0.06 | 0.26 | 0.05 | 0.21 |
| v/fnG      | Max              | 1.15 | 2.76 | 1.11 | 2.72 | 1.06 | 2.67 | 1.04 | 2.58 | 1.04 | 2.54 | 1.02 | 2.61 | 1.02 | 2.63 | 1.05 | 2.42 |
| $f_{u_i}$  | Min              | 0.99 | 1.00 | 0.89 | 0.93 | 0.89 | 0.98 | 0.79 | 0.95 | 0.81 | 0.96 | 0.77 | 0.94 | 0.76 | 0.93 | 0.82 | 0.99 |
|            | <0.95            | 0    | 0    | 35   | 3    | 63   | 0    | 112  | 0    | 109  | 0    | 118  | 1    | 119  | 2    | 113  | 0    |
| rT.T       | Avr              | 1.06 | 1.05 | 0.99 | 0.99 | 0.96 | 1.02 | 0.89 | 0.99 | 0.90 | 1.00 | 0.87 | 0.99 | 0.86 | 0.98 | 0.91 | 1.00 |
|            | SD               | 0.03 | 0.03 | 0.04 | 0.05 | 0.04 | 0.03 | 0.06 | 0.03 | 0.05 | 0.03 | 0.06 | 0.04 | 0.06 | 0.04 | 0.05 | 0.03 |
| $f_{nF}$   | Max              | 1.15 | 1.15 | 1.11 | 1.10 | 1.06 | 1.11 | 1.04 | 1.09 | 1.04 | 1.10 | 1.02 | 1.09 | 1.02 | 1.11 | 1.05 | 1.10 |
| $f_{u1}$   | Min              | 0.99 | 0.92 | 0.89 | 0.87 | 0.89 | 0.94 | 0.79 | 0.92 | 0.81 | 0.93 | 0.77 | 0.90 | 0.76 | 0.90 | 0.82 | 0.94 |
|            | <0.95            | 0    | 4    | 35   | 47   | 63   | 1    | 112  | 22   | 109  | 14   | 118  | 37   | 119  | 44   | 113  | 5    |
|            | Avr              | 1.06 | 1.05 | 1.05 | 0.99 | 1.07 | 1.02 | 1.03 | 0.99 | 1.07 | 1.00 | 1.02 | 0.99 | 0.99 | 0.98 | 1.01 | 1.00 |
| $T^*$      | SD               | 0.03 | 0.03 | 0.05 | 0.05 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | 0.03 | 0.05 | 0.04 | 0.05 | 0.04 | 0.04 | 0.03 |
| fur/fnFT.T | Max              | 1.15 | 1.15 | 1.18 | 1.10 | 1.18 | 1.11 | 1.14 | 1.09 | 1.18 | 1.10 | 1.14 | 1.09 | 1.10 | 1.11 | 1.12 | 1.10 |
|            | Min              | 0.99 | 0.92 | 0.91 | 0.87 | 0.97 | 0.94 | 0.93 | 0.92 | 0.96 | 0.93 | 0.92 | 0.90 | 0.89 | 0.90 | 0.92 | 0.94 |
|            | <0.95            | 0    | 4    | 10   | 47   | 0    | 1    | 10   | 22   | 0    | 14   | 24   | 37   | 40   | 44   | 21   | 5    |

**Table 3:**  $f_{uT}/f_{nG.T}$ ,  $f_{uT}/f_{nFT.T}$  and  $f_{uT}/f_{nFT.T*}$  statistical indicators for C and R columns numerically analyzed in this work at T=20/100-200-300-400-500-600-700-800 °C

**Table 4:**  $f_{uT}/f_{nG.T}$ ,  $f_{uT}/f_{nFT.T}$  and  $f_{uT}/f_{nFT.T}$  statistical indicators for the C columns tested by Bandula Heva & Mahendran(2012) at  $T=20-200-300-400-500-600-700 \ ^{\circ}C$ 

| T          | (°C)          | 2    | 0    | 20   | 00   | 3    | 00   | 40   | 00   | 5    | 00   | 6    | 00   | 70   | 00   |
|------------|---------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| 1          | $\ell_{FT,T}$ | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 |
|            | n             | 3    | 3    | 3    | 3    | 3    | 1    | 3    | 3    | 3    | 2    | 6    | 0    | 5    | 1    |
|            | Avr           | 1.14 | 1.37 | 1.17 | 1.31 | 1.10 | 1.43 | 1.21 | 1.56 | 1.24 | 1.34 | 1.24 | 0.00 | 1.17 | 1.23 |
| T          | SD            | 0.02 | 0.24 | 0.05 | 0.16 | 0.06 | 0.00 | 0.06 | 0.10 | 0.18 | 0.08 | 0.07 | 0.00 | 0.07 | 0.00 |
| r∕fnG      | Max           | 1.17 | 1.72 | 1.25 | 1.55 | 1.19 | 1.43 | 1.30 | 1.66 | 1.51 | 1.42 | 1.31 | 0.00 | 1.27 | 1.23 |
| $f_{u_i}$  | Min           | 1.11 | 1.16 | 1.12 | 1.11 | 1.01 | 1.43 | 1.13 | 1.41 | 1.04 | 1.27 | 1.03 | 0.00 | 1.08 | 1.23 |
|            | <0.95         | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    |
| T.T        | Avr           | 1.14 | 1.03 | 1.17 | 0.95 | 1.10 | 1.14 | 1.21 | 1.12 | 1.24 | 1.02 | 1.24 | 0.00 | 1.17 | 1.12 |
|            | SD            | 0.02 | 0.03 | 0.05 | 0.06 | 0.06 | 0.00 | 0.06 | 0.14 | 0.18 | 0.13 | 0.07 | 0.00 | 0.07 | 0.00 |
| $f_{nF}$   | Max           | 1.17 | 1.06 | 1.25 | 1.04 | 1.19 | 1.14 | 1.30 | 1.33 | 1.51 | 1.15 | 1.31 | 0.00 | 1.27 | 1.12 |
| $f_{uT}$   | Min           | 1.11 | 1.00 | 1.12 | 0.89 | 1.01 | 1.14 | 1.13 | 0.92 | 1.04 | 0.90 | 1.03 | 0.00 | 1.08 | 1.12 |
|            | <0.95         | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 0    |
|            | Avr           | 1.14 | 1.03 | 1.23 | 0.95 | 1.21 | 1.14 | 1.39 | 1.12 | 1.48 | 1.02 | 1.47 | 0.00 | 1.36 | 1.12 |
| $T^*$      | SD            | 0.02 | 0.03 | 0.08 | 0.06 | 0.09 | 0.00 | 0.09 | 0.14 | 0.18 | 0.13 | 0.09 | 0.00 | 0.07 | 0.00 |
| fur/fnFT.1 | Max           | 1.17 | 1.06 | 1.34 | 1.04 | 1.28 | 1.14 | 1.46 | 1.33 | 1.74 | 1.15 | 1.58 | 0.00 | 1.47 | 1.12 |
|            | Min           | 1.11 | 1.00 | 1.16 | 0.89 | 1.08 | 1.14 | 1.25 | 0.92 | 1.23 | 0.90 | 1.30 | 0.00 | 1.23 | 1.12 |
|            | <0.95         | 0    | 0    | 0    | 2    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 0    | 0    | 0    |

| <i>T</i>  | (°C)              | 2    | 0    | 20   | 00   | 3    | 00   | 40   | 00   | 50   | 00   | 60   | 00   | 70   | 00   |
|-----------|-------------------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| į         | l <sub>FT.T</sub> | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 | ≤1.5 | >1.5 |
|           | n                 | 34   | 44   | 16   | 23   | 16   | 23   | 18   | 21   | 22   | 17   | 37   | 2    | 37   | 2    |
|           | Avr               | 1.09 | 1.29 | 1.09 | 1.31 | 1.09 | 1.33 | 0.92 | 1.32 | 0.97 | 1.28 | 1.02 | 1.04 | 1.03 | 1.17 |
| ;T        | SD                | 0.02 | 0.15 | 0.03 | 0.16 | 0.03 | 0.17 | 0.05 | 0.17 | 0.05 | 0.15 | 0.03 | 0.00 | 0.01 | 0.03 |
| v/fnG     | Max               | 1.13 | 1.76 | 1.15 | 1.76 | 1.16 | 1.80 | 1.06 | 1.80 | 1.06 | 1.71 | 1.13 | 1.05 | 1.08 | 1.19 |
| $f_{ui}$  | Min               | 1.03 | 1.02 | 1.03 | 1.04 | 1.00 | 1.06 | 0.86 | 0.98 | 0.89 | 1.01 | 0.89 | 1.04 | 1.00 | 1.14 |
|           | <0.95             | 0    | 0    | 0    | 0    | 0    | 0    | 14   | 0    | 11   | 0    | 3    | 0    | 0    | 0    |
| T.T       | Avr               | 1.09 | 1.00 | 1.09 | 0.98 | 1.09 | 0.97 | 0.92 | 0.96 | 0.97 | 0.99 | 1.02 | 0.96 | 1.03 | 1.04 |
|           | SD                | 0.02 | 0.04 | 0.03 | 0.04 | 0.03 | 0.04 | 0.05 | 0.03 | 0.05 | 0.03 | 0.03 | 0.00 | 0.01 | 0.03 |
| $f_{nF}$  | Max               | 1.13 | 1.16 | 1.15 | 1.06 | 1.16 | 1.09 | 1.06 | 1.03 | 1.06 | 1.05 | 1.13 | 0.96 | 1.08 | 1.06 |
| $f_{uT}$  | Min               | 1.03 | 0.90 | 1.03 | 0.88 | 1.00 | 0.86 | 0.86 | 0.86 | 0.89 | 0.90 | 0.89 | 0.95 | 1.00 | 1.01 |
|           | <0.95             | 0    | 8    | 0    | 4    | 0    | 8    | 14   | 7    | 11   | 3    | 3    | 0    | 0    | 0    |
|           | Avr               | 1.09 | 1.00 | 1.15 | 0.98 | 1.20 | 0.97 | 1.05 | 0.96 | 1.13 | 0.99 | 1.20 | 0.96 | 1.17 | 1.04 |
| $T^*$     | SD                | 0.02 | 0.04 | 0.05 | 0.04 | 0.06 | 0.04 | 0.05 | 0.03 | 0.05 | 0.03 | 0.08 | 0.00 | 0.05 | 0.03 |
| $f_{nFT}$ | Max               | 1.13 | 1.16 | 1.23 | 1.06 | 1.31 | 1.09 | 1.22 | 1.03 | 1.27 | 1.05 | 1.36 | 0.96 | 1.24 | 1.06 |
| fut/fi    | Min               | 1.03 | 0.90 | 1.06 | 0.88 | 1.07 | 0.86 | 1.00 | 0.86 | 1.05 | 0.90 | 1.03 | 0.95 | 1.08 | 1.01 |
|           | <0.95             | 0    | 8    | 0    | 4    | 0    | 8    | 0    | 7    | 0    | 3    | 0    | 0    | 0    | 0    |

**Table 5:**  $f_{uT}/f_{nG.T}, f_{uT}/f_{nFT.T}$  and  $f_{uT}/f_{nFT.T*}$  statistical indicators for the C columns numerically analyzed by Bandula Heva &<br/>Mahendran (2012) at  $T=20-200-300-400-500-600-700 \ ^{\circ}C$ 



**Figure 10.** Comparison between the design curve given by Eq. (8) and  $f_{uT}/\sigma_{yT}$  values of column C<sub>2</sub> with length  $L_3$  and  $\lambda_{FT20}=0.75-1.5-2.5$  under T=20-300-500-700°C, obtained with the EC3:1-2, G250, G450 and G550 constitutive models

| 1     | Model |       | $f_{uT}$ | $\sigma_{vT}$ |        |
|-------|-------|-------|----------|---------------|--------|
| ∧FT.F | Model | 20 °C | 300 °C   | 500 °C        | 700 °C |
|       | EC3   | 0.86  | 0.74     | 0.69          | 0.65   |
| 0.75  | G250  | 0.83  | 0.78     | 0.73          | 0.82   |
| 0.75  | G450  | 0.83  | 0.79     | 0.79          | 0.79   |
|       | G550  | 0.83  | 0.79     | 0.79          | 0.79   |
|       | EC3   | 0.43  | 0.41     | 0.40          | 0.39   |
| 15    | G250  | 0.42  | 0.41     | 0.40          | 0.42   |
| 1.5   | G450  | 0.42  | 0.41     | 0.41          | 0.41   |
|       | G550  | 0.42  | 0.41     | 0.41          | 0.41   |
|       | EC3   | 0.22  | 0.21     | 0.21          | 0.21   |
| 25    | G250  | 0.21  | 0.21     | 0.20          | 0.21   |
| 2.5   | G450  | 0.21  | 0.21     | 0.21          | 0.21   |
|       | G550  | 0.21  | 0.21     | 0.21          | 0.21   |

**Table 6:** Influence of steel constitutive model adopted on the  $f_{uT}/\sigma_{yT}$  values of columns C<sub>2</sub> with length  $L_3$  and  $\lambda_{FT,20}=0.75-1.5-2.5$  under T=20-300-500-700 °C

temperature. However, the picture changes for  $\lambda_{FT.20}=0.75$ , since the  $f_{uT}/\sigma_{yT}$  values obtained with the EC3:1-2 model are visibly apart from the remaining ones, particularly for T=500 °C and T=700 °C – they are ordered according to the constitutive model sequence EC3:1-2-G250-G450-G550.

(ix) In view of the findings reported in the above items, it is clear that the available DSM design curve is not able to predict adequately the FT ultimate strengths of columns such that  $\lambda_{FTT} \leq 1.5$  (low-to-moderate slenderness) at elevated temperatures – a large number these ultimate strength predictions are substantially unsafe. In order to improve them, it is necessary to modify/lower the existing strength curve (Eq. (7) or (8)) valid for low-to-moderate slenderness range. This issue will be addressed in the next section (Section 5.1).

#### 5.1 Modification/lowering of the DSM design curve (low-to-moderate slenderness range)

On the basis of the numerical failure load data gathered in this work (see Section 4.2), a first attempt is now made to modify/lower the available DSM design curve valid for the low-to-moderate slenderness range ( $\lambda_{FT.T} \leq 1.5$ ), so that it is able to predict adequately the ultimate strengths of C and R columns failing in FT modes at elevated temperatures. The main idea behind this attempt is to incorporate a temperaturedependence reduction factor ( $\eta$ ) in the expressions providing the DSM strength curve for  $\lambda_{FT.T} \leq 1.5$ , while retaining Eq. (8) for  $\lambda_{FT.T} > 1.5$ . A "trial- and-error" curve fitting procedure led to the sought expression, termed  $f_{nFT.T*}$  (the asterisk identifies the presence of the modification for  $\lambda_{FT.T} \leq 1.5$ ),

$$f_{nFT.T*} = \begin{cases} f_{yT} \left(\eta \cdot 0.658\right)^{\eta \cdot \lambda_{FT,T}^{2}} & \text{if} \quad \lambda_{FT.T} \le 1.5 \\ f_{yT} \left(\frac{a}{\lambda_{FT.T}^{b}}\right) & \text{if} \quad \lambda_{FT.T} > 1.5 \end{cases} \text{ with } \eta = 1.3 \cdot 10^{-6} T^{2} - 1.4 \cdot 10^{-3} T + 1.127 \le 1 . \tag{9}$$

These strength curve set differs from Eq. (8) in the presence of factor  $\eta$  factor multiplying both (i) the coefficient 0.658 and (ii) the exponent  $\lambda_{FT.T^2}$ . The DSM-based FT design curves provided by Eq. (9) are displayed in Fig. 11 (and also plotted in Fig. 7, as solid blue lines). It is worth mentioning that the room/moderate temperature ( $T \le 100$  °C) curve remains unchanged ( $\eta = 1$ ). Since the modification of the current design curve is based on the numerical ultimate strengths obtained in this work, adopting the



Figure 11. Modified/lowered DSM-based FT strength curves for columns under T=20/100-200-300-400-500-600-700-800 °C

EC3:1-2 steel constitutive model, it is just logical that the new design curves (for  $\lambda_{FT.T} \le 1.5$ ) are ordered according to their previous predictions, *i.e.*, in the sequence  $T=20/100-200-300-800-400-700-500-600 \,^{\circ}C$ .

In order to assess the quality of the ultimate strength predictions provided by the  $f_{uT}/f_{nFT:T^*}$  values, Fig. 12 plot the ratios  $f_{uT}/f_{nFT:T^*}$  against  $\lambda_{FT:T}$  – the associated statistical indicators are provided in Tables 3 to 5 and the  $f_{uT}/f_{nFT:T^*}$  values (for the columns analyzed in this work) are given in Tables A1.1 to A5.5, included in Annex A. The observation of these ultimate strength predictions leads to the following conclusions:

- (i) Despite the inherent simplicity of the modification, the ultimate strength prediction quality improved considerably for the stockier ( $\lambda_{FTT} \leq 1.5$ ) columns analyzed in this work. Naturally, the estimates of the experimental and numerical ultimate strengths reported by Bandula Heva & Mahendran (2012) are now a bit safer, but still reasonably accurate, as attested by the  $f_{uT}/f_{nFTT*}$  statistical indicators provided in Tables 4 and 5. Indeed, the averages, standard deviations and maximum/minimum values vary between 1.05 and 1.48, 0.02 and 0.18, 1.13 and 1.74, and 1.00 and 1.30, respectively.
- (ii) The  $f_{uT}/f_{nFT.T*}$  statistical indicators concerning the ultimate strengths obtained in this work for columns with  $\lambda_{FT.T} \le 1.5$ , given in Table 3, become also fairly good and are similar for all the temperatures considered. Indeed, the average, standard deviation and maximum/minimum values vary from 0.99 to 1.07, 0.03 to 0.05, 1.10 to 1.18 and 0.89 to 0.99, respectively. Although the numbers of unsafe ultimate strength predictions are still substantial for columns under at  $T \ge 600$  °C, the amounts of overestimation are considerably reduced they never exceed 8%.

The fact that the quite small proposed modification was shown to improve visibly the ultimate strength prediction quality, for columns with  $\lambda_{FTT} \leq 1.5$ ), provides encouragement to proceed along this path in the search for an efficient DSM-based design approach for columns exhibiting FT failures at elevated temperatures. The next step of this ongoing investigation consists of looking for additional experimental and numerical ultimate strength data available in the literature. This is by no means an easy task, since, to the authors' best knowledge, the number of works dealing specifically with column FT failures under elevated temperature is very scarce – indeed, it is expected that the available ultimate strength data will be dispersed among studies having different focuses. Then, the merits of the strength curves defined in Eq. (9) in predicting these additional ultimate strengths will be assessed – such assessment will provide either additional evidence on the adequacy of these strength curves or guidelines on how to improve them. It is also worth noting that the authors are also planning, for the near future, the performance of a test campaign involving lipped channel columns failing in FT modes at both room and elevated temperatures.



Figure 12.  $f_{uT}/f_{nFT.T*}$  vs.  $\lambda_{FT.T}$  plots of the ultimate strengths considered in this work (T=20/100-200-300-400-500-600-700-800 °C)

## 6 Concluding Remarks

This paper reported the most recent results of an ongoing investigation, initiated by the authors a few years ago, on the post-buckling behavior, ultimate strength and DSM design of cold-formed steel columns failing in flexural-torsional modes. Its scope has been extended in this work to cover columns subjected to elevated temperatures, typically caused by fire conditions. After addressing the column geometry selection and the influence of the temperature on the column flexural-torsional post-buckling behavior, numerical ultimate strengths were obtained for 2400 columns exhibiting (i) two cross-section shapes (lipped channels and racks) with various dimensions and lengths (60 geometries per cross-section shape), (ii) 5 room temperature yield stresses, chosen to enable covering wide flexural-torsional slenderness ranges  $(0.42 \le \lambda_{FT.T} \le 4.0)$ , and (iii) eight uniform temperatures (up to 800 °C).

The flexural-torsional ultimate strength obtained in this work, together with the 39 experimental and 312 numerical values reported by Bandula Heva & Mahendran (2012), were subsequently used to propose a first contribution towards the development of an efficient DSM-based design approach for columns failing in flexural-torsional modes at elevated temperatures. Out of the various findings reported in this work, the following ones deserve to be specially mentioned:

- (i) Regardless of the temperature, the  $f_{uT}/\sigma_{yT}$  vs.  $\lambda_{FTT}$  "clouds" follow "Winter-type" curve trends, even if there exists some "vertical dispersion" in the low-to-moderate slenderness range ( $\lambda_{FTT} \le 1.5$ ) – this dispersion was found to be higher for the columns tested and numerically analyzed by Bandula Heva & Mahendran (2012). No such visible vertical dispersion was observed for columns with  $\lambda_{FTT} > 1.5$ .
- (ii) All  $f_{uT}/\sigma_{yT}$  values of columns with  $\lambda_{FT,T} \le 1.5$  at elevated temperatures ( $T > 100 \,^{\circ}C$ ) were found to fall below those concerning the same columns at room/moderate temperatures ( $T \le 100 \,^{\circ}C$ ). This did not happen for the columns with  $\lambda_{FT,T} > 1.5$ .
- (iii) Concerning the ultimate strengths at room/moderate temperatures ( $T \le 100$  °C), it was observed that those concerning columns with  $\lambda_{FT,T} > 1.5$  are visibly underestimated by the current DSM design curve (AISI 2016). This observation led to the proposal, by Dinis *et al.* (2019b), of a novel DSMbased flexural-torsional design curve set, which was shown to improve substantially the ultimate strength prediction quality. On the other hand, most ultimate strengths of columns with  $\lambda_{FT,T} \le 1.5$ under elevated temperatures ( $T \ge 200$  °C) are visibly overestimated by the available DSM FT design curve – recall that the curves of Dinis *et al.* (2019b) coincide with the codified one for  $\lambda_{FT,T} \le 1.5$ .
- (iv) The DSM FT design curve set proposed by Dinis *et al.* (2019b), including temperature-dependent critical (FT) buckling and squash stresses loads, was used to predict the ultimate strengths of columns at elevated temperatures. Fairly accurate and mostly safe ultimate strength predictions are provided only for columns with  $\lambda_{FT.T} > 1.5$ . In the low-to-moderate slenderness range ( $\lambda_{FT.T} \le 1.5$ ), several column ultimate strengths are clearly overestimated, thus showing that some modification is needed.
- (v) The existing FT strength curve for columns with  $\lambda_{FTT} \leq 1.5$ , which is the currently codified one (it was not altered by the proposal of Dinis et al. (2019b)), was modified through the multiplication by a temperature-dependent reduction factor  $\eta$ . In spite of the inherent simplicity of this modification, the ensuing DSM-based temperature-dependent "lowered" strength curve set improves considerable the column ultimate strength prediction quality, thus providing encouragement to proceed along this path in the search for with an efficient DSM-based design approach for columns failing in FT modes at elevated temperatures.

The next steps of this ongoing investigation consist of (i) conducting a test campaign involving lipped channel columns, carefully selected to fail in FT modes at room and elevated temperatures, and (ii) performing parametric studies to gather failure load data concerning columns with a wide variety of cross-section shapes and dimensions and also failing in FT modes at room and elevated temperatures -e.g., those considered by Dinis *et al.* 2019b: plain channels, hat-sections, return lipped channels, web-stiffened lipped channels and web/flange-stiffened lipped channels.

#### References

AISC (American Institute of Steel Construction) (1986). Load and Resistance Factor Design Specification for Structural Steel Buildings (AISC 328:1986), Chicago IL.

ABNT (Brazilian Standards Association) (2010). *Brazilian Standard on Design of Cold-Formed Steel Structures* (ABNT NBR 14762:2010), Rio de Janeiro. (Portuguese)

AISI (American Iron and Steel Institute) (1996). Cold-Formed Steel Design Manual, Washington DC.

- AISI (American Iron and Steel Institute) (2016). North American Specification (NAS) for the Design of Cold-Formed Steel Structural Members (AISI-S100-16) + respective Commentary, Washington DC.
- AS/NZS (Standards of Australia SA and Standards of New Zealand SNZ) (2018). *Cold-Formed Steel Structures* (AS/NZS 4600:2018 3<sup>rd</sup> ed.), Sydney-Wellington.
- Bandula Heva Y (2009). *Behaviour and Design of Cold-formed Steel Compression Members at Elevated Temperatures*, PhD Thesis, Queensland University of Technology, Brisbane, Australia.
- Bandula Heva Y, Mahendran M (2012). Flexural-torsional buckling tests of cold-formed steel compression members at elevated temperatures, *Steel and Composite Structures*, **14**(3), 205-227.
- Bebiano R, Camotim D, Gonçalves R (2018). GBTUL 2.0 a second-generation code for the GBT-based buckling and vibration analysis of thin-walled members, *Thin-Walled Structures*, **124**(March), 235-257.
- Camotim D, Dinis PB, Martins AD (2016). Direct Strength Method (DSM) a general approach for the design of cold-formed steel structures, *Recent Trends in Cold-Formed Steel Construction*, C. Yu (ed.), Woodhead Publishing (Series in Civil and Structural Engineering), Amsterdam, 69-105.
- Comité Européen de Normalisation (CEN) (2005). Eurocode 3: Design of Steel Structures Part 1.2: General Rules Structural Fire Design, Brussels.
- Dinis PB, Camotim D, Martins AD (2018). On the accuracy of the current Direct Strength Method (DSM) design curve for columns failing in global modes, *Website Proceedings of Structural Stability Research Council (SSRC) Annual Stability Conference* (Baltimore, 10-13/4).
- Dinis PB, Camotim D, Landesmann A, Martins AD (2019a). On the Direct Strength Method design of columns against global failure, *Thin-Walled Structures*, **139**(June), 242-270.
- Dinis PB, Camotim D, Landesmann A, Martins AD (2019b). Improving the Direct Strength Method prediction of column flexural-torsional failure loads, *Thin-Walled Structures*, in press. (https://doi.org/10.1016/j.tws.2019.106461)
- Ellobody E, Young B (2005). Behavior of cold-formed steel plain angle columns, *Journal of Structural Engineering* (ASCE), **131**(3), 469-478.
- Kankanamge ND (2009). Flexural Behaviour of Cold-formed Steel Beams at Elevated Temperatures, PhD thesis, Queensland University of Technology (QUT), Brisbane, Australia.
- Landesmann A, Camotim D (2011). On the distortional buckling, post-buckling and strength of cold-formed steel lipped channel columns under fire conditions, *Journal of Structural Fire Engineering*, **2**(1), 1-19.
- Landesmann A, Camotim D, Silva FCM (2019). DSM design of cold-formed steel columns failing in distortional modes at elevated temperatures, *International Journal of Steel Structures*, **19**(3), 1023-1041.
- Li Z, Abreu JCB, Leng J, Ádány S, Schafer BW (2014). Review: constrained finite strip method developments and applications in cold-formed steel design, *Thin-Walled Structures*, 81(August), 2-18.
- Peköz T, Sümer O (1992), *Design Provisions for Cold-Formed Steel Columns and Beam-Column*, Research Report RP92-1, American Iron and Steel Institute, Washington DC.
- Ranawaka T, Mahendran M (2009). Experimental study of the mechanical properties of light gauge cold-formed steels at elevated temperatures, *Fire Safety Journal*, **147**(2), 219-229.
- SAS (Swanson Analysis Systems Inc.) (2009). ANSYS Reference Manual (version 12).
- Schafer B.W. (2019). Advances in the Direct Strength Method of cold-formed steel design, *Thin-Walled Structures*, **140**(July), 533-541.
- Ziemian R (editor) (2010). Guide to Stability Design Criteria for Metal Structures (6th edition), John Wiley & Sons, Hoboken.

## ANNEX A – Data Concerning C and R Columns at Room and Elevated Temperatures

The sets of Tables A1 to A5 provide information concerning the column numerical failure loads, at room and elevated temperatures (T=20/100 to T=800 °C), and their DSM-based estimates. Each table shows the results of all the columns with two cross-sections dealt with in this work (one C and one R, both sharing the same "order" – see Table 1) – recall that six lengths are considered for each cross-section ( $L_1$  to  $L_6$  – see Table 1). Each set comprises five tables, one per yield stress considered ( $\sigma_{y20}=75-150-$ 300-450-600*MPa*), which leads to a total of 25 tables. The values presented are (i) FT slenderness values ( $\lambda_{FT.T}$ ), (ii) ratios between FT ultimate strengths and yield stresses ( $f_{uT}/\sigma_{yT}$ ), and (iii) three numerical-topredicted ultimate strength ratios ( $f_{uT}/f_{nGT.T}, f_{uT}/f_{nFT.T}$ , and  $f_{uT}/f_{nF.TT*}$ ).

| I     | T (9C)          |                 |                      | $C_1$                     |                   |                    |                 |                      | $R_1$    |                           |                      |
|-------|-----------------|-----------------|----------------------|---------------------------|-------------------|--------------------|-----------------|----------------------|----------|---------------------------|----------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu\tau}/f_{\mu G T}$ | $f_{uT}/f_{nETT}$ | $f_{uT}/f_{vFFT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | fut/fnGT | $f_{\mu\tau}/f_{\mu FTT}$ | $f_{uT}/f_{vE} ET^*$ |
| $L_l$ | 20/100          | 0.545           | 0.916                | 1.038                     | 1.038             | 1.038              | 0.735           | 0.842                | 1.055    | 1.055                     | 1.055                |
|       | 200             | 0.542           | 0.857                | 0.969                     | 0.969             | 1.065              | 0.731           | 0.773                | 0.967    | 0.967                     | 1.052                |
|       | 300             | 0.538           | 0.787                | 0.889                     | 0.889             | 1.056              | 0.726           | 0.716                | 0.892    | 0.892                     | 1.042                |
|       | 400             | 0.525           | 0.731                | 0.821                     | 0.821             | 1.032              | 0.708           | 0.640                | 0.790    | 0.790                     | 0.972                |
|       | 500             | 0.513           | 0.745                | 0.831                     | 0.831             | 1.076              | 0.691           | 0.661                | 0.807    | 0.807                     | 1.021                |
|       | 600             | 0.536           | 0.715                | 0.806                     | 0.806             | 1.037              | 0.723           | 0.615                | 0.766    | 0.766                     | 0.961                |
|       | 700             | 0.545           | 0.706                | 0.800                     | 0.800             | 0.993              | 0.735           | 0.603                | 0.755    | 0.755                     | 0.918                |
|       | 800             | 0.481           | 0.763                | 0.841                     | 0.841             | 0.987              | 0.648           | 0.687                | 0.819    | 0.819                     | 0.949                |
| $L_2$ | 20/100          | 0.734           | 0.839                | 1.051                     | 1.051             | 1.051              | 0.873           | 0.764                | 1.051    | 1.051                     | 1.051                |
|       | 200             | 0.730           | 0.788                | 0.985                     | 0.985             | 1.071              | 0.868           | 0.701                | 0.961    | 0.961                     | 1.036                |
|       | 300             | 0.725           | 0.721                | 0.898                     | 0.898             | 1.048              | 0.862           | 0.662                | 0.903    | 0.903                     | 1.038                |
|       | 400             | 0.707           | 0.651                | 0.802                     | 0.802             | 0.988              | 0.841           | 0.595                | 0.800    | 0.800                     | 0.965                |
|       | 500             | 0.690           | 0.671                | 0.818                     | 0.818             | 1.036              | 0.820           | 0.616                | 0.816    | 0.816                     | 1.012                |
|       | 600             | 0.722           | 0.627                | 0.779                     | 0.779             | 0.979              | 0.859           | 0.567                | 0.772    | 0.772                     | 0.947                |
|       | 700             | 0.734           | 0.614                | 0.770                     | 0.770             | 0.935              | 0.873           | 0.553                | 0.760    | 0.760                     | 0.905                |
|       | 800             | 0.647           | 0.697                | 0.831                     | 0.831             | 0.962              | 0.770           | 0.646                | 0.827    | 0.827                     | 0.948                |
| $L_3$ | 20/100          | 0.921           | 0.728                | 1.038                     | 1.038             | 1.038              | 1.010           | 0.672                | 1.030    | 1.030                     | 1.030                |
|       | 200             | 0.916           | 0.693                | 0.985                     | 0.985             | 1.057              | 1.004           | 0.608                | 0.928    | 0.928                     | 0.989                |
|       | 300             | 0.909           | 0.643                | 0.908                     | 0.908             | 1.037              | 0.997           | 0.599                | 0.909    | 0.909                     | 1.025                |
|       | 400             | 0.887           | 0.584                | 0.811                     | 0.811             | 0.972              | 0.973           | 0.549                | 0.815    | 0.815                     | 0.962                |
|       | 500             | 0.865           | 0.605                | 0.828                     | 0.828             | 1.019              | 0.949           | 0.567                | 0.827    | 0.827                     | 1.002                |
|       | 600             | 0.906           | 0.557                | 0.786                     | 0.786             | 0.957              | 0.993           | 0.519                | 0.785    | 0.785                     | 0.940                |
|       | 700             | 0.921           | 0.544                | 0.776                     | 0.776             | 0.917              | 1.010           | 0.506                | 0.775    | 0.775                     | 0.902                |
|       | 800             | 0.812           | 0.637                | 0.839                     | 0.839             | 0.956              | 0.890           | 0.601                | 0.838    | 0.838                     | 0.947                |
| $L_4$ | 20/100          | 1.036           | 0.650                | 1.019                     | 1.019             | 1.019              | 1.144           | 0.579                | 1.002    | 1.002                     | 1.002                |
|       | 200             | 1.031           | 0.625                | 0.976                     | 0.976             | 1.037              | 1.138           | 0.527                | 0.906    | 0.906                     | 0.954                |
|       | 300             | 1.023           | 0.587                | 0.910                     | 0.910             | 1.022              | 1.130           | 0.534                | 0.911    | 0.911                     | 1.006                |
|       | 400             | 0.999           | 0.540                | 0.820                     | 0.820             | 0.964              | 1.102           | 0.495                | 0.824    | 0.824                     | 0.948                |
|       | 500             | 0.974           | 0.562                | 0.836                     | 0.836             | 1.007              | 1.075           | 0.517                | 0.838    | 0.838                     | 0.988                |
|       | 600             | 1.020           | 0.514                | 0.794                     | 0.794             | 0.945              | 1.126           | 0.472                | 0.802    | 0.802                     | 0.933                |
|       | 700             | 1.036           | 0.501                | 0.786                     | 0.786             | 0.910              | 1.144           | 0.457                | 0.791    | 0.791                     | 0.896                |
|       | 800             | 0.914           | 0.596                | 0.845                     | 0.845             | 0.952              | 1.009           | 0.554                | 0.849    | 0.849                     | 0.945                |
| $L_5$ | 20/100          | 1.258           | 0.516                | 1.001                     | 1.001             | 1.001              | 1.276           | 0.499                | 0.987    | 0.987                     | 0.987                |
|       | 200             | 1.251           | 0.502                | 0.967                     | 0.967             | 1.007              | 1.269           | 0.453                | 0.889    | 0.889                     | 0.924                |
|       | 300             | 1.242           | 0.481                | 0.917                     | 0.917             | 0.993              | 1.260           | 0.470                | 0.913    | 0.913                     | 0.985                |
|       | 400             | 1.212           | 0.455                | 0.843                     | 0.843             | 0.947              | 1.229           | 0.445                | 0.838    | 0.838                     | 0.938                |
|       | 500             | 1.183           | 0.475                | 0.853                     | 0.853             | 0.981              | 1.199           | 0.465                | 0.849    | 0.849                     | 0.972                |
|       | 600             | 1.238           | 0.434                | 0.825                     | 0.825             | 0.933              | 1.255           | 0.424                | 0.819    | 0.819                     | 0.923                |
|       | 700             | 1.258           | 0.422                | 0.818                     | 0.818             | 0.904              | 1.276           | 0.411                | 0.813    | 0.813                     | 0.895                |
|       | 800             | 1.110           | 0.512                | 0.857                     | 0.857             | 0.940              | 1.125           | 0.503                | 0.854    | 0.854                     | 0.935                |
| $L_6$ | 20/100          | 1.416           | 0.443                | 1.025                     | 1.025             | 1.025              | 1.404           | 0.434                | 0.992    | 0.992                     | 0.992                |
|       | 200             | 1.408           | 0.432                | 0.991                     | 0.991             | 1.014              | 1.396           | 0.395                | 0.893    | 0.893                     | 0.915                |
|       | 300             | 1.398           | 0.416                | 0.944                     | 0.944             | 0.992              | 1.387           | 0.413                | 0.924    | 0.924                     | 0.974                |
|       | 400             | 1.364           | 0.400                | 0.871                     | 0.871             | 0.943              | 1.353           | 0.399                | 0.858    | 0.858                     | 0.931                |
|       | 500             | 1.331           | 0.417                | 0.875                     | 0.875             | 0.968              | 1.320           | 0.418                | 0.866    | 0.866                     | 0.962                |
|       | 500             | 1.393           | 0.381                | 0.859                     | 0.859             | 0.933              | 1.381           | 0.380                | 0.844    | 0.844                     | 0.919                |
|       | /00             | 1.416           | 0.370                | 0.857                     | 0.857             | 0.912              | 1.404           | 0.368                | 0.841    | 0.841                     | 0.897                |
|       | 800             | 1.249           | 0.455                | 0.8/1                     | 0.8/1             | 0.934              | 1.238           | 0.453                | 0.861    | 0.861                     | 0.925                |

Table A1.1: Numerical failure loads and their DSM estimates concerning the C<sub>1</sub> and R<sub>1</sub> columns with  $\sigma_{y20}=75 MPa$ .

|       | T (9C)          |                 |                      | $C_1$                    |                           |                             |                 |                      | $R_1$                   |                   |                      |
|-------|-----------------|-----------------|----------------------|--------------------------|---------------------------|-----------------------------|-----------------|----------------------|-------------------------|-------------------|----------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu\tau}/f_{\mu GT}$ | $f_{\mu\tau}/f_{\mu FTT}$ | $f_{\mu\tau}/f_{\mu F FT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu T}/f_{\mu G T}$ | $f_{uT}/f_{nETT}$ | $f_{uT}/f_{vE} ET^*$ |
| $L_l$ | 20/100          | 0.771           | 0.848                | 1.087                    | 1.087                     | 1.087                       | 1.039           | 0.685                | 1.077                   | 1.077             | 1.077                |
| -     | 200             | 0.767           | 0.743                | 0.950                    | 0.950                     | 1.031                       | 1.033           | 0.627                | 0.981                   | 0.981             | 1.043                |
|       | 300             | 0.761           | 0.744                | 0.948                    | 0.948                     | 1.103                       | 1.026           | 0.622                | 0.966                   | 0.966             | 1.085                |
|       | 400             | 0.743           | 0.686                | 0.864                    | 0.864                     | 1.058                       | 1.001           | 0.575                | 0.874                   | 0.874             | 1.027                |
|       | 500             | 0.725           | 0.703                | 0.876                    | 0.876                     | 1.103                       | 0.977           | 0.596                | 0.889                   | 0.889             | 1.070                |
|       | 600             | 0.759           | 0.666                | 0.847                    | 0.847                     | 1.057                       | 1.022           | 0.549                | 0.851                   | 0.851             | 1.013                |
|       | 700             | 0.771           | 0.655                | 0.840                    | 0.840                     | 1.015                       | 1.039           | 0.536                | 0.842                   | 0.842             | 0.974                |
|       | 800             | 0.680           | 0.727                | 0.882                    | 0.882                     | 1.019                       | 0.916           | 0.631                | 0.896                   | 0.896             | 1.009                |
| $L_2$ | 20/100          | 1.038           | 0.677                | 1.062                    | 1.062                     | 1.062                       | 1.234           | 0.545                | 1.031                   | 1.031             | 1.031                |
|       | 200             | 1.032           | 0.636                | 0.993                    | 0.993                     | 1.056                       | 1.227           | 0.494                | 0.928                   | 0.928             | 0.969                |
|       | 300             | 1.025           | 0.620                | 0.962                    | 0.962                     | 1.081                       | 1.219           | 0.517                | 0.963                   | 0.963             | 1.048                |
|       | 400             | 1.000           | 0.577                | 0.877                    | 0.877                     | 1.029                       | 1.189           | 0.493                | 0.891                   | 0.891             | 1.006                |
|       | 500             | 0.976           | 0.598                | 0.890                    | 0.890                     | 1.073                       | 1.160           | 0.514                | 0.904                   | 0.904             | 1.045                |
|       | 600             | 1.021           | 0.553                | 0.855                    | 0.855                     | 1.018                       | 1.214           | 0.471                | 0.873                   | 0.873             | 0.994                |
|       | 700             | 1.038           | 0.539                | 0.846                    | 0.846                     | 0.979                       | 1.234           | 0.457                | 0.865                   | 0.865             | 0.962                |
|       | 800             | 0.915           | 0.632                | 0.897                    | 0.897                     | 1.010                       | 1.089           | 0.550                | 0.903                   | 0.903             | 0.994                |
| $L_3$ | 20/100          | 1.302           | 0.507                | 1.031                    | 1.031                     | 1.031                       | 1.428           | 0.437                | 1.025                   | 1.025             | 1.025                |
|       | 200             | 1.295           | 0.488                | 0.984                    | 0.984                     | 1.020                       | 1.420           | 0.393                | 0.915                   | 0.915             | 0.935                |
|       | 300             | 1.286           | 0.482                | 0.963                    | 0.963                     | 1.035                       | 1.410           | 0.423                | 0.971                   | 0.971             | 1.018                |
|       | 400             | 1.255           | 0.465                | 0.899                    | 0.899                     | 1.000                       | 1.376           | 0.414                | 0.915                   | 0.915             | 0.987                |
|       | 500             | 1.224           | 0.485                | 0.908                    | 0.908                     | 1.033                       | 1.342           | 0.433                | 0.920                   | 0.920             | 1.014                |
|       | 600             | 1.281           | 0.445                | 0.884                    | 0.884                     | 0.989                       | 1.405           | 0.396                | 0.903                   | 0.903             | 0.977                |
|       | 700             | 1.302           | 0.432                | 0.879                    | 0.879                     | 0.962                       | 1.428           | 0.384                | 0.901                   | 0.901             | 0.956                |
|       | 800             | 1.148           | 0.524                | 0.910                    | 0.910                     | 0.992                       | 1.259           | 0.472                | 0.917                   | 0.917             | 0.982                |
| $L_4$ | 20/100          | 1.466           | 0.432                | 1.061                    | 1.061                     | 1.061                       | 1.618           | 0.347                | 1.035                   | 0.987             | 0.987                |
|       | 200             | 1.458           | 0.416                | 1.013                    | 1.013                     | 1.030                       | 1.609           | 0.329                | 0.970                   | 0.929             | 0.929                |
|       | 300             | 1.447           | 0.412                | 0.991                    | 0.991                     | 1.031                       | 1.598           | 0.351                | 1.021                   | 0.982             | 0.982                |
|       | 400             | 1.412           | 0.403                | 0.928                    | 0.928                     | 0.992                       | 1.559           | 0.344                | 0.954                   | 0.931             | 0.931                |
|       | 500             | 1.378           | 0.420                | 0.930                    | 0.930                     | 1.016                       | 1.521           | 0.364                | 0.959                   | 0.950             | 0.950                |
|       | 600             | 1.442           | 0.385                | 0.920                    | 0.920                     | 0.984                       | 1.592           | 0.333                | 0.961                   | 0.926             | 0.926                |
|       | 700             | 1.466           | 0.374                | 0.920                    | 0.920                     | 0.966                       | 1.618           | 0.323                | 0.963                   | 0.919             | 0.919                |
|       | 800             | 1.293           | 0.458                | 0.922                    | 0.922                     | 0.982                       | 1.427           | 0.400                | 0.937                   | 0.937             | 0.974                |
| $L_5$ | 20/100          | 1.779           | 0.339                | 1.225                    | 1.038                     | 1.038                       | 1.804           | 0.310                | 1.151                   | 1.026             | 1.026                |
|       | 200             | 1.769           | 0.326                | 1.163                    | 0.990                     | 0.990                       | 1.794           | 0.268                | 0.983                   | 0.879             | 0.879                |
|       | 300             | 1.757           | 0.322                | 1.134                    | 0.972                     | 0.972                       | 1.782           | 0.298                | 1.079                   | 0.969             | 0.969                |
|       | 400             | 1.715           | 0.315                | 1.055                    | 0.926                     | 0.926                       | 1.739           | 0.297                | 1.023                   | 0.933             | 0.933                |
|       | 500             | 1.672           | 0.328                | 1.045                    | 0.940                     | 0.940                       | 1.696           | 0.311                | 1.019                   | 0.944             | 0.944                |
|       | 600             | 1.750           | 0.301                | 1.053                    | 0.906                     | 0.906                       | 1.775           | 0.284                | 1.021                   | 0.920             | 0.920                |
|       | 700             | 1.779           | 0.294                | 1.062                    | 0.900                     | 0.900                       | 1.804           | 0.276                | 1.024                   | 0.913             | 0.913                |
|       | 800             | 1.569           | 0.358                | 1.005                    | 0.962                     | 0.962                       | 1.591           | 0.342                | 0.987                   | 0.951             | 0.951                |
| $L_6$ | 20/100          | 2.002           | 0.300                | 1.370                    | 1.035                     | 1.035                       | 1.986           | 0.273                | 1.229                   | 1.033             | 1.033                |
|       | 200             | 1.991           | 0.287                | 1.297                    | 0.985                     | 0.985                       | 1.975           | 0.241                | 1.070                   | 0.902             | 0.902                |
|       | 300             | 1.977           | 0.283                | 1.264                    | 0.967                     | 0.967                       | 1.961           | 0.259                | 1.136                   | 0.962             | 0.962                |
|       | 400             | 1.930           | 0.276                | 1.170                    | 0.916                     | 0.916                       | 1.914           | 0.259                | 1.081                   | 0.930             | 0.930                |
|       | 500             | 1.882           | 0.286                | 1.155                    | 0.926                     | 0.926                       | 1.867           | 0.270                | 1.074                   | 0.938             | 0.938                |
|       | 600             | 1.970           | 0.265                | 1.173                    | 0.900                     | 0.900                       | 1.954           | 0.249                | 1.083                   | 0.919             | 0.919                |
|       | 700             | 2.002           | 0.261                | 1.192                    | 0.901                     | 0.901                       | 1.986           | 0.242                | 1.087                   | 0.913             | 0.913                |
|       | 800             | 1.766           | 0.310                | 1.103                    | 0.942                     | 0.942                       | 1.751           | 0.297                | 1.041                   | 0.945             | 0.945                |

Table A1.2: Numerical failure loads and their DSM estimates concerning the C<sub>1</sub> and R<sub>1</sub> columns with  $\sigma_{y20}$ =150*MPa*.

|       | T (9C)          |                 |                      | $C_1$                   |                   |                             |                 |                      | $R_1$                   |                   |                    |
|-------|-----------------|-----------------|----------------------|-------------------------|-------------------|-----------------------------|-----------------|----------------------|-------------------------|-------------------|--------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu T}/f_{\mu G T}$ | $f_{uT}/f_{vETT}$ | $f_{\mu\tau}/f_{\mu F FT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu T}/f_{\mu G T}$ | $f_{uT}/f_{nETT}$ | $f_{uT}/f_{vE}ET*$ |
| $L_l$ | 20/100          | 1.091           | 0.632                | 1.039                   | 1.039             | 1.039                       | 1.470           | 0.414                | 1.023                   | 1.023             | 1.023              |
| 1     | 200             | 1.085           | 0.629                | 1.029                   | 1.029             | 1.089                       | 1.461           | 0.374                | 0.914                   | 0.914             | 0.929              |
|       | 300             | 1.077           | 0.615                | 0.999                   | 0.999             | 1.113                       | 1.451           | 0.410                | 0.990                   | 0.990             | 1.029              |
|       | 400             | 1.051           | 0.590                | 0.937                   | 0.937             | 1.090                       | 1.416           | 0.413                | 0.957                   | 0.957             | 1.022              |
|       | 500             | 1.025           | 0.611                | 0.949                   | 0.949             | 1.131                       | 1.381           | 0.432                | 0.960                   | 0.960             | 1.047              |
|       | 600             | 1.073           | 0.568                | 0.920                   | 0.920             | 1.082                       | 1.446           | 0.396                | 0.950                   | 0.950             | 1.015              |
|       | 700             | 1.091           | 0.555                | 0.913                   | 0.913             | 1.046                       | 1.470           | 0.384                | 0.948                   | 0.948             | 0.995              |
|       | 800             | 0.962           | 0.648                | 0.954                   | 0.954             | 1.068                       | 1.296           | 0.477                | 0.963                   | 0.963             | 1.025              |
| $L_2$ | 20/100          | 1.468           | 0.430                | 1.059                   | 1.059             | 1.059                       | 1.746           | 0.320                | 1.112                   | 1.012             | 1.012              |
|       | 200             | 1.460           | 0.427                | 1.041                   | 1.041             | 1.058                       | 1.736           | 0.292                | 1.004                   | 0.917             | 0.917              |
|       | 300             | 1.450           | 0.421                | 1.014                   | 1.014             | 1.054                       | 1.724           | 0.316                | 1.070                   | 0.982             | 0.982              |
|       | 400             | 1.415           | 0.419                | 0.968                   | 0.968             | 1.034                       | 1.682           | 0.319                | 1.030                   | 0.959             | 0.959              |
|       | 500             | 1.380           | 0.437                | 0.969                   | 0.969             | 1.058                       | 1.641           | 0.334                | 1.026                   | 0.971             | 0.971              |
|       | 600             | 1.444           | 0.402                | 0.962                   | 0.962             | 1.029                       | 1.717           | 0.306                | 1.029                   | 0.946             | 0.946              |
|       | 700             | 1.468           | 0.391                | 0.963                   | 0.963             | 1.011                       | 1.746           | 0.297                | 1.033                   | 0.940             | 0.940              |
|       | 800             | 1.295           | 0.478                | 0.965                   | 0.965             | 1.027                       | 1.539           | 0.371                | 1.002                   | 0.986             | 0.986              |
| $L_3$ | 20/100          | 1.841           | 0.327                | 1.264                   | 1.036             | 1.036                       | 2.019           | 0.265                | 1.233                   | 1.026             | 1.026              |
|       | 200             | 1.831           | 0.322                | 1.231                   | 1.014             | 1.014                       | 2.008           | 0.243                | 1.119                   | 0.934             | 0.934              |
|       | 300             | 1.818           | 0.315                | 1.187                   | 0.985             | 0.985                       | 1.994           | 0.259                | 1.173                   | 0.983             | 0.983              |
|       | 400             | 1.774           | 0.312                | 1.120                   | 0.951             | 0.951                       | 1.946           | 0.259                | 1.117                   | 0.951             | 0.951              |
|       | 500             | 1.731           | 0.323                | 1.104                   | 0.961             | 0.961                       | 1.898           | 0.270                | 1.108                   | 0.957             | 0.957              |
|       | 600             | 1.811           | 0.302                | 1.130                   | 0.941             | 0.941                       | 1.986           | 0.249                | 1.122                   | 0.943             | 0.943              |
|       | 700             | 1.841           | 0.296                | 1.145                   | 0.938             | 0.938                       | 2.019           | 0.243                | 1.130                   | 0.940             | 0.940              |
|       | 800             | 1.624           | 0.352                | 1.059                   | 0.980             | 0.980                       | 1.781           | 0.297                | 1.075                   | 0.966             | 0.966              |
| $L_4$ | 20/100          | 2.073           | 0.291                | 1.425                   | 1.041             | 1.041                       | 2.288           | 0.200                | 1.196                   | 0.921             | 0.921              |
|       | 200             | 2.061           | 0.286                | 1.388                   | 1.019             | 1.019                       | 2.275           | 0.212                | 1.254                   | 0.969             | 0.969              |
|       | 300             | 2.047           | 0.281                | 1.343                   | 0.993             | 0.993                       | 2.259           | 0.222                | 1.290                   | 1.001             | 1.001              |
|       | 400             | 1.997           | 0.279                | 1.267                   | 0.960             | 0.960                       | 2.205           | 0.222                | 1.229                   | 0.968             | 0.968              |
|       | 500             | 1.948           | 0.286                | 1.237                   | 0.960             | 0.960                       | 2.151           | 0.230                | 1.213                   | 0.971             | 0.971              |
|       | 600             | 2.039           | 0.272                | 1.291                   | 0.958             | 0.958                       | 2.251           | 0.213                | 1.232                   | 0.958             | 0.958              |
|       | 700             | 2.073           | 0.268                | 1.314                   | 0.960             | 0.960                       | 2.288           | 0.209                | 1.250                   | 0.962             | 0.962              |
|       | 800             | 1.828           | 0.306                | 1.165                   | 0.961             | 0.961                       | 2.018           | 0.250                | 1.163                   | 0.968             | 0.968              |
| $L_5$ | 20/100          | 2.516           | 0.248                | 1.787                   | 1.082             | 1.082                       | 2.552           | 0.205                | 1.519                   | 1.094             | 1.094              |
|       | 200             | 2.502           | 0.245                | 1.746                   | 1.063             | 1.063                       | 2.537           | 0.189                | 1.387                   | 1.002             | 1.002              |
|       | 300             | 2.485           | 0.241                | 1.694                   | 1.038             | 1.038                       | 2.520           | 0.198                | 1.433                   | 1.040             | 1.040              |
|       | 400             | 2.425           | 0.239                | 1.605                   | 1.007             | 1.007                       | 2.459           | 0.197                | 1.355                   | 0.998             | 0.998              |
|       | 500             | 2.365           | 0.245                | 1.561                   | 1.004             | 1.004                       | 2.398           | 0.203                | 1.334                   | 0.998             | 0.998              |
|       | 600             | 2.475           | 0.234                | 1.637                   | 1.007             | 1.007                       | 2.510           | 0.190                | 1.367                   | 0.994             | 0.994              |
|       | 700             | 2.516           | 0.230                | 1.663                   | 1.007             | 1.007                       | 2.552           | 0.186                | 1.382                   | 0.995             | 0.995              |
|       | 800             | 2.219           | 0.257                | 1.444                   | 0.987             | 0.987                       | 2.250           | 0.220                | 1.270                   | 0.988             | 0.988              |
| $L_6$ | 20/100          | 2.832           | 0.222                | 2.031                   | 1.097             | 1.097                       | 2.809           | 0.184                | 1.651                   | 1.121             | 1.121              |
|       | 200             | 2.816           | 0.219                | 1.983                   | 1.077             | 1.077                       | 2.793           | 0.169                | 1.505                   | 1.025             | 1.025              |
|       | 300             | 2.796           | 0.216                | 1.925                   | 1.052             | 1.052                       | 2.773           | 0.178                | 1.559                   | 1.066             | 1.066              |
|       | 400             | 2.729           | 0.215                | 1.824                   | 1.021             | 1.021                       | 2.706           | 0.177                | 1.475                   | 1.024             | 1.024              |
|       | 500             | 2.662           | 0.220                | 1.778                   | 1.020             | 1.020                       | 2.640           | 0.183                | 1.452                   | 1.023             | 1.023              |
|       | 600             | 2.786           | 0.210                | 1.857                   | 1.019             | 1.019                       | 2.763           | 0.171                | 1.489                   | 1.020             | 1.020              |
|       | 700             | 2.832           | 0.206                | 1.886                   | 1.019             | 1.019                       | 2.809           | 0.167                | 1.505                   | 1.021             | 1.021              |
|       | 800             | 2.498           | 0.222                | 1.581                   | 0.964             | 0.964                       | 2.477           | 0.197                | 1.379                   | 1.011             | 1.011              |

Table A1.3: Numerical failure loads and their DSM estimates concerning the C<sub>1</sub> and R<sub>1</sub> columns with  $\sigma_{y20}$ =300 MPa.

|       | T                |                 |                      | $C_1$      |                   |                    |                 |                      | $R_1$                   |                   |                    |
|-------|------------------|-----------------|----------------------|------------|-------------------|--------------------|-----------------|----------------------|-------------------------|-------------------|--------------------|
| L     | $I(\mathcal{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{uT}$ | fut/furG t | $f_{uT}/f_{vETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{uT}$ | $f_{\mu T}/f_{\mu G T}$ | $f_{uT}/f_{vETT}$ | $f_{uT}/f_{vEET*}$ |
| $L_1$ | 20/100           | 1.336           | 0.471                | 0.993      | 0.993             | 0.993              | 1.800           | 0.299                | 1.103                   | 0.985             | 0.985              |
| 1     | 200              | 1.328           | 0.469                | 0.981      | 0.981             | 1.013              | 1.790           | 0.274                | 1.002                   | 0.898             | 0.898              |
|       | 300              | 1.319           | 0.470                | 0.973      | 0.973             | 1.039              | 1.777           | 0.295                | 1.061                   | 0.955             | 0.955              |
|       | 400              | 1.287           | 0.477                | 0.955      | 0.955             | 1.054              | 1.734           | 0.300                | 1.027                   | 0.939             | 0.939              |
|       | 500              | 1.255           | 0.498                | 0.962      | 0.962             | 1.087              | 1.692           | 0.314                | 1.024                   | 0.950             | 0.950              |
|       | 600              | 1.314           | 0.459                | 0.946      | 0.946             | 1.050              | 1.771           | 0.288                | 1.028                   | 0.927             | 0.927              |
|       | 700              | 1.336           | 0.448                | 0.945      | 0.945             | 1.026              | 1.800           | 0.280                | 1.033                   | 0.923             | 0.923              |
|       | 800              | 1.178           | 0.547                | 0.978      | 0.978             | 1.061              | 1.587           | 0.351                | 1.008                   | 0.973             | 0.973              |
| $L_2$ | 20/100           | 1.798           | 0.332                | 1.224      | 1.026             | 1.026              | 2.138           | 0.244                | 1.274                   | 1.023             | 1.023              |
|       | 200              | 1.788           | 0.329                | 1.198      | 1.010             | 1.010              | 2.126           | 0.226                | 1.167                   | 0.940             | 0.940              |
|       | 300              | 1.775           | 0.324                | 1.165      | 0.989             | 0.989              | 2.111           | 0.239                | 1.214                   | 0.983             | 0.983              |
|       | 400              | 1.733           | 0.324                | 1.110      | 0.965             | 0.965              | 2.060           | 0.241                | 1.167                   | 0.959             | 0.959              |
|       | 500              | 1.690           | 0.335                | 1.091      | 0.971             | 0.971              | 2.009           | 0.250                | 1.151                   | 0.961             | 0.961              |
|       | 600              | 1.769           | 0.316                | 1.127      | 0.960             | 0.960              | 2.103           | 0.234                | 1.178                   | 0.956             | 0.956              |
|       | 700              | 1.798           | 0.310                | 1.144      | 0.959             | 0.959              | 2.138           | 0.228                | 1.191                   | 0.956             | 0.956              |
|       | 800              | 1.586           | 0.366                | 1.048      | 0.993             | 0.993              | 1.885           | 0.274                | 1.109                   | 0.963             | 0.963              |
| $L_3$ | 20/100           | 2.255           | 0.270                | 1.565      | 1.054             | 1.054              | 2.473           | 0.202                | 1.411                   | 1.036             | 1.036              |
|       | 200              | 2.243           | 0.268                | 1.535      | 1.039             | 1.039              | 2.459           | 0.184                | 1.269                   | 0.935             | 0.935              |
|       | 300              | 2.227           | 0.265                | 1.499      | 1.022             | 1.022              | 2.442           | 0.201                | 1.363                   | 1.009             | 1.009              |
|       | 400              | 2.173           | 0.265                | 1.428      | 0.997             | 0.997              | 2.383           | 0.203                | 1.315                   | 0.988             | 0.988              |
|       | 500              | 2.119           | 0.271                | 1.389      | 0.993             | 0.993              | 2.324           | 0.211                | 1.299                   | 0.991             | 0.991              |
|       | 600              | 2.218           | 0.260                | 1.459      | 0.998             | 0.998              | 2.433           | 0.196                | 1.321                   | 0.980             | 0.980              |
|       | 700              | 2.255           | 0.257                | 1.488      | 1.002             | 1.002              | 2.473           | 0.191                | 1.332                   | 0.978             | 0.978              |
|       | 800              | 1.989           | 0.286                | 1.290      | 0.981             | 0.981              | 2.181           | 0.229                | 1.240                   | 0.983             | 0.983              |
| $L_4$ | 20/100           | 2.539           | 0.246                | 1.808      | 1.085             | 1.085              | 2.802           | 0.183                | 1.636                   | 1.112             | 1.112              |
|       | 200              | 2.525           | 0.244                | 1.775      | 1.072             | 1.072              | 2.787           | 0.169                | 1.495                   | 1.020             | 1.020              |
|       | 300              | 2.507           | 0.242                | 1.735      | 1.054             | 1.054              | 2.767           | 0.179                | 1.562                   | 1.070             | 1.070              |
|       | 400              | 2.446           | 0.242                | 1.655      | 1.030             | 1.030              | 2.701           | 0.179                | 1.493                   | 1.038             | 1.038              |
|       | 500              | 2.386           | 0.248                | 1.608      | 1.025             | 1.025              | 2.634           | 0.185                | 1.466                   | 1.035             | 1.035              |
|       | 600              | 2.497           | 0.238                | 1.690      | 1.031             | 1.031              | 2.757           | 0.174                | 1.510                   | 1.037             | 1.037              |
|       | 700              | 2.539           | 0.234                | 1.723      | 1.034             | 1.034              | 2.802           | 0.171                | 1.528                   | 1.038             | 1.038              |
|       | 800              | 2.239           | 0.260                | 1.487      | 1.008             | 1.008              | 2.472           | 0.200                | 1.390                   | 1.021             | 1.021              |
| $L_5$ | 20/100           | 3.082           | 0.207                | 2.245      | 1.117             | 1.117              | 3.125           | 0.154                | 1.710                   | 1.086             | 1.086              |
|       | 200              | 3.065           | 0.206                | 2.203      | 1.102             | 1.102              | 3.108           | 0.148                | 1.632                   | 1.041             | 1.041              |
|       | 300              | 3.043           | 0.204                | 2.153      | 1.084             | 1.084              | 3.086           | 0.158                | 1.715                   | 1.098             | 1.098              |
|       | 400              | 2.970           | 0.205                | 2.060      | 1.062             | 1.062              | 3.011           | 0.159                | 1.642                   | 1.067             | 1.067              |
|       | 500              | 2.897           | 0.210                | 2.010      | 1.062             | 1.062              | 2.937           | 0.164                | 1.615                   | 1.066             | 1.066              |
|       | 600              | 3.032           | 0.200                | 2.095      | 1.059             | 1.059              | 3.074           | 0.154                | 1.659                   | 1.065             | 1.065              |
|       | 700              | 3.082           | 0.182                | 1.972      | 0.981             | 0.981              | 3.125           | 0.151                | 1.676                   | 1.065             | 1.065              |
|       | 800              | 2.718           | 0.220                | 1.855      | 1.042             | 1.042              | 2.756           | 0.177                | 1.534                   | 1.053             | 1.053              |
| $L_6$ | 20/100           | 3.468           | 0.181                | 2.481      | 1.101             | 1.101              | 3.440           | 0.143                | 1.923                   | 1.152             | 1.152              |
|       | 200              | 3.449           | 0.180                | 2.437      | 1.087             | 1.087              | 3.421           | 0.131                | 1.742                   | 1.047             | 1.047              |
|       | 300              | 3.425           | 0.178                | 2.379      | 1.069             | 1.069              | 3.397           | 0.140                | 1.843                   | 1.112             | 1.112              |
|       | 400              | 3.342           | 0.179                | 2.280      | 1.049             | 1.049              | 3.315           | 0.141                | 1.768                   | 1.083             | 1.083              |
|       | 500              | 3.260           | 0.184                | 2.235      | 1.053             | 1.053              | 3.233           | 0.146                | 1.743                   | 1.085             | 1.085              |
|       | 600              | 3.412           | 0.174                | 2.307      | 1.040             | 1.040              | 3.384           | 0.137                | 1.783                   | 1.079             | 1.079              |
|       | 700              | 3.468           | 0.171                | 2.339      | 1.038             | 1.038              | 3.440           | 0.133                | 1.799                   | 1.077             | 1.077              |
|       | 800              | 3.059           | 0.183                | 1.951      | 0.978             | 0.978              | 3.034           | 0.159                | 1.664                   | 1.077             | 1.077              |

Table A1.4: Numerical failure loads and their DSM estimates concerning the C<sub>1</sub> and R<sub>1</sub> columns with  $\sigma_{y20}$ =450 MPa.

|       | T (9C)          |                 |                              | <i>C</i> <sub>1</sub> |           |                       |                 |                              | $R_1$               |           |                       |
|-------|-----------------|-----------------|------------------------------|-----------------------|-----------|-----------------------|-----------------|------------------------------|---------------------|-----------|-----------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{\mu T} / \sigma_{\nu T}$ | $f_{\mu T}/f_{nGT}$   | fut/fnFTT | $f_{\mu T}/f_{nFFT*}$ | $\lambda_{FTT}$ | $f_{\mu T} / \sigma_{\nu T}$ | $f_{\mu T}/f_{nGT}$ | fut/fnFTT | $f_{\mu T}/f_{nFFT*}$ |
| $L_l$ | 20/100          | 1.542           | 0.369                        | 1.000                 | 0.973     | 0.973                 | 2.078           | 0.240                        | 1.183               | 0.967     | 0.967                 |
|       | 200             | 1.534           | 0.369                        | 0.989                 | 0.967     | 0.967                 | 2.067           | 0.218                        | 1.062               | 0.871     | 0.871                 |
|       | 300             | 1.523           | 0.371                        | 0.980                 | 0.965     | 0.965                 | 2.052           | 0.240                        | 1.154               | 0.950     | 0.950                 |
|       | 400             | 1.486           | 0.383                        | 0.966                 | 0.966     | 1.013                 | 2.003           | 0.245                        | 1.122               | 0.939     | 0.939                 |
|       | 500             | 1.450           | 0.400                        | 0.965                 | 0.965     | 1.032                 | 1.953           | 0.256                        | 1.112               | 0.944     | 0.944                 |
|       | 600             | 1.517           | 0.369                        | 0.969                 | 0.958     | 0.958                 | 2.044           | 0.236                        | 1.126               | 0.929     | 0.929                 |
|       | 700             | 1.542           | 0.359                        | 0.975                 | 0.948     | 0.948                 | 2.078           | 0.230                        | 1.132               | 0.925     | 0.925                 |
|       | 800             | 1.360           | 0.451                        | 0.978                 | 0.978     | 1.029                 | 1.833           | 0.279                        | 1.070               | 0.945     | 0.945                 |
| $L_2$ | 20/100          | 2.076           | 0.288                        | 1.417                 | 1.034     | 1.034                 | 2.469           | 0.204                        | 1.418               | 1.042     | 1.042                 |
|       | 200             | 2.065           | 0.287                        | 1.394                 | 1.022     | 1.022                 | 2.455           | 0.186                        | 1.275               | 0.941     | 0.941                 |
|       | 300             | 2.050           | 0.285                        | 1.366                 | 1.008     | 1.008                 | 2.438           | 0.202                        | 1.372               | 1.016     | 1.016                 |
|       | 400             | 2.001           | 0.287                        | 1.308                 | 0.989     | 0.989                 | 2.379           | 0.205                        | 1.323               | 0.994     | 0.994                 |
|       | 500             | 1.951           | 0.294                        | 1.275                 | 0.988     | 0.988                 | 2.320           | 0.212                        | 1.301               | 0.993     | 0.993                 |
|       | 600             | 2.042           | 0.281                        | 1.336                 | 0.990     | 0.990                 | 2.428           | 0.199                        | 1.335               | 0.991     | 0.991                 |
|       | 700             | 2.076           | 0.277                        | 1.360                 | 0.992     | 0.992                 | 2.469           | 0.194                        | 1.347               | 0.990     | 0.990                 |
|       | 800             | 1.831           | 0.311                        | 1.190                 | 0.980     | 0.980                 | 2.177           | 0.229                        | 1.237               | 0.982     | 0.982                 |
| $L_3$ | 20/100          | 2.604           | 0.240                        | 1.854                 | 1.086     | 1.086                 | 2.856           | 0.176                        | 1.638               | 1.100     | 1.100                 |
|       | 200             | 2.589           | 0.239                        | 1.825                 | 1.075     | 1.075                 | 2.840           | 0.162                        | 1.491               | 1.005     | 1.005                 |
|       | 300             | 2.571           | 0.237                        | 1.790                 | 1.061     | 1.061                 | 2.820           | 0.174                        | 1.577               | 1.067     | 1.067                 |
|       | 400             | 2.509           | 0.239                        | 1.716                 | 1.042     | 1.042                 | 2.752           | 0.176                        | 1.518               | 1.043     | 1.043                 |
|       | 500             | 2.447           | 0.244                        | 1.669                 | 1.038     | 1.038                 | 2.684           | 0.182                        | 1.491               | 1.041     | 1.041                 |
|       | 600             | 2.562           | 0.234                        | 1.753                 | 1.044     | 1.044                 | 2.809           | 0.171                        | 1.536               | 1.042     | 1.042                 |
|       | 700             | 2.604           | 0.231                        | 1.785                 | 1.046     | 1.046                 | 2.856           | 0.167                        | 1.554               | 1.044     | 1.044                 |
|       | 800             | 2.296           | 0.257                        | 1.545                 | 1.022     | 1.022                 | 2.518           | 0.196                        | 1.415               | 1.027     | 1.027                 |
| $L_4$ | 20/100          | 2.931           | 0.217                        | 2.129                 | 1.112     | 1.112                 | 3.236           | 0.150                        | 1.796               | 1.117     | 1.117                 |
|       | 200             | 2.915           | 0.216                        | 2.096                 | 1.101     | 1.101                 | 3.218           | 0.140                        | 1.652               | 1.031     | 1.031                 |
|       | 300             | 2.895           | 0.215                        | 2.056                 | 1.087     | 1.087                 | 3.195           | 0.151                        | 1.754               | 1.099     | 1.099                 |
|       | 400             | 2.825           | 0.217                        | 1.975                 | 1.069     | 1.069                 | 3.118           | 0.153                        | 1.692               | 1.076     | 1.076                 |
|       | 500             | 2.755           | 0.222                        | 1.924                 | 1.067     | 1.067                 | 3.041           | 0.158                        | 1.666               | 1.076     | 1.076                 |
|       | 600             | 2.884           | 0.212                        | 2.014                 | 1.068     | 1.068                 | 3.183           | 0.148                        | 1.709               | 1.074     | 1.074                 |
|       | 700             | 2.931           | 0.209                        | 2.046                 | 1.069     | 1.069                 | 3.236           | 0.145                        | 1.726               | 1.073     | 1.073                 |
|       | 800             | 2.585           | 0.235                        | 1.788                 | 1.054     | 1.054                 | 2.854           | 0.171                        | 1.587               | 1.066     | 1.066                 |
| $L_5$ | 20/100          | 3.559           | 0.178                        | 2.565                 | 1.110     | 1.110                 | 3.609           | 0.132                        | 1.965               | 1.142     | 1.142                 |
|       | 200             | 3.539           | 0.177                        | 2.526                 | 1.099     | 1.099                 | 3.588           | 0.121                        | 1.775               | 1.035     | 1.035                 |
|       | 300             | 3.514           | 0.176                        | 2.478                 | 1.086     | 1.086                 | 3.563           | 0.131                        | 1.899               | 1.113     | 1.113                 |
|       | 400             | 3.429           | 0.178                        | 2.389                 | 1.072     | 1.072                 | 3.477           | 0.133                        | 1.837               | 1.093     | 1.093                 |
|       | 500             | 3.345           | 0.184                        | 2.341                 | 1.076     | 1.076                 | 3.391           | 0.138                        | 1.813               | 1.095     | 1.095                 |
|       | 600             | 3.501           | 0.173                        | 2.423                 | 1.065     | 1.065                 | 3.550           | 0.129                        | 1.852               | 1.087     | 1.087                 |
|       | 700             | 3.559           | 0.170                        | 2.453                 | 1.062     | 1.062                 | 3.609           | 0.126                        | 1.866               | 1.085     | 1.085                 |
|       | 800             | 3.139           | 0.196                        | 2.205                 | 1.078     | 1.078                 | 3.182           | 0.150                        | 1.738               | 1.092     | 1.092                 |
| $L_6$ | 20/100          | 4.005           | 0.151                        | 2.763                 | 1.067     | 1.067                 | 3.972           | 0.115                        | 2.073               | 1.136     | 1.136                 |
|       | 200             | 3.983           | 0.151                        | 2.724                 | 1.057     | 1.057                 | 3.950           | 0.105                        | 1.864               | 1.025     | 1.025                 |
|       | 300             | 3.955           | 0.150                        | 2.674                 | 1.045     | 1.045                 | 3.922           | 0.115                        | 2.011               | 1.111     | 1.111                 |
|       | 400             | 3.859           | 0.152                        | 2.584                 | 1.034     | 1.034                 | 3.828           | 0.117                        | 1.951               | 1.094     | 1.094                 |
|       | 500             | 3.764           | 0.157                        | 2.545                 | 1.043     | 1.043                 | 3.733           | 0.121                        | 1.931               | 1.099     | 1.099                 |
|       | 600             | 3.940           | 0.147                        | 2.610                 | 1.023     | 1.023                 | 3.907           | 0.113                        | 1.962               | 1.086     | 1.086                 |
|       | 700             | 4.005           | 0.144                        | 2.634                 | 1.017     | 1.017                 | 3.972           | 0.110                        | 1.974               | 1.082     | 1.082                 |
|       | 800             | 3.532           | 0.170                        | 2.422                 | 1.056     | 1.056                 | 3.503           | 0.133                        | 1.862               | 1.102     | 1.102                 |

Table A1.5: Numerical failure loads and their DSM estimates concerning the C<sub>1</sub> and R<sub>1</sub> columns with  $\sigma_{y20}$ =600 MPa.

|       | T      |                   |                        | <i>C</i> <sub>2</sub> |       |                    |                 |                        | $R_2$            |                   |                       |
|-------|--------|-------------------|------------------------|-----------------------|-------|--------------------|-----------------|------------------------|------------------|-------------------|-----------------------|
| L     | I(C)   | λ <sub>ET T</sub> | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$      | ft/f  | $f_{uT}/f_{uEET*}$ | $\lambda_{ETT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uF} = ET*$ |
| $L_1$ | 20/100 | 0.501             | 0.920                  | 1.022                 | 1.022 | 1.022              | 0.656           | 0.874                  | 1.046            | <u>1.046</u>      | 1.046                 |
| -1    | 200    | 0.498             | 0.866                  | 0.961                 | 0.961 | 1.058              | 0.652           | 0.808                  | 0.965            | 0.965             | 1.054                 |
|       | 300    | 0.495             | 0.806                  | 0.893                 | 0.893 | 1.064              | 0.648           | 0.745                  | 0.888            | 0.888             | 1.045                 |
|       | 400    | 0.483             | 0.759                  | 0.837                 | 0.837 | 1.057              | 0.632           | 0.675                  | 0.798            | 0.798             | 0.992                 |
|       | 500    | 0.471             | 0.771                  | 0.846                 | 0.846 | 1.099              | 0.616           | 0.693                  | 0.813            | 0.813             | 1.039                 |
|       | 600    | 0.493             | 0.746                  | 0.826                 | 0.826 | 1.067              | 0.645           | 0.653                  | 0.778            | 0.778             | 0.987                 |
|       | 700    | 0.501             | 0.739                  | 0.821                 | 0.821 | 1.024              | 0.656           | 0.642                  | 0.769            | 0.769             | 0.944                 |
|       | 800    | 0.442             | 0.786                  | 0.853                 | 0.853 | 1.003              | 0.578           | 0.717                  | 0.825            | 0.825             | 0.961                 |
| $L_2$ | 20/100 | 0.560             | 0.921                  | 1.051                 | 1.051 | 1.051              | 0.744           | 0.834                  | 1.051            | 1.051             | 1.051                 |
|       | 200    | 0.557             | 0.860                  | 0.980                 | 0.980 | 1.076              | 0.740           | 0.769                  | 0.967            | 0.967             | 1.051                 |
|       | 300    | 0.553             | 0.791                  | 0.899                 | 0.899 | 1.067              | 0.735           | 0.715                  | 0.896            | 0.896             | 1.045                 |
|       | 400    | 0.540             | 0.734                  | 0.829                 | 0.829 | 1.041              | 0.717           | 0.643                  | 0.798            | 0.798             | 0.980                 |
|       | 500    | 0.527             | 0.748                  | 0.840                 | 0.840 | 1.085              | 0.699           | 0.663                  | 0.814            | 0.814             | 1.028                 |
|       | 600    | 0.551             | 0.717                  | 0.814                 | 0.814 | 1.045              | 0.732           | 0.618                  | 0.774            | 0.774             | 0.970                 |
|       | 700    | 0.560             | 0.708                  | 0.808                 | 0.808 | 1.001              | 0.744           | 0.606                  | 0.764            | 0.764             | 0.927                 |
|       | 800    | 0.494             | 0.767                  | 0.850                 | 0.850 | 0.996              | 0.656           | 0.690                  | 0.826            | 0.826             | 0.956                 |
| $L_3$ | 20/100 | 0.626             | 0.898                  | 1.058                 | 1.058 | 1.058              | 0.820           | 0.792                  | 1.050            | 1.050             | 1.050                 |
|       | 200    | 0.622             | 0.839                  | 0.987                 | 0.987 | 1.080              | 0.816           | 0.728                  | 0.962            | 0.962             | 1.040                 |
|       | 300    | 0.618             | 0.769                  | 0.902                 | 0.902 | 1.064              | 0.810           | 0.686                  | 0.902            | 0.902             | 1.043                 |
|       | 400    | 0.603             | 0.705                  | 0.820                 | 0.820 | 1.023              | 0.791           | 0.617                  | 0.801            | 0.801             | 0.975                 |
|       | 500    | 0.588             | 0.721                  | 0.834                 | 0.834 | 1.070              | 0.771           | 0.638                  | 0.818            | 0.818             | 1.023                 |
|       | 600    | 0.615             | 0.684                  | 0.802                 | 0.802 | 1.022              | 0.807           | 0.591                  | 0.776            | 0.776             | 0.961                 |
|       | 700    | 0.626             | 0.674                  | 0.794                 | 0.794 | 0.978              | 0.820           | 0.577                  | 0.765            | 0.765             | 0.918                 |
|       | 800    | 0.552             | 0.744                  | 0.845                 | 0.845 | 0.987              | 0.724           | 0.667                  | 0.830            | 0.830             | 0.955                 |
| $L_4$ | 20/100 | 0.702             | 0.827                  | 1.017                 | 1.017 | 1.017              | 0.907           | 0.739                  | 1.043            | 1.043             | 1.043                 |
|       | 200    | 0.698             | 0.796                  | 0.976                 | 0.976 | 1.064              | 0.902           | 0.677                  | 0.951            | 0.951             | 1.022                 |
|       | 300    | 0.693             | 0.739                  | 0.904                 | 0.904 | 1.059              | 0.895           | 0.648                  | 0.907            | 0.907             | 1.037                 |
|       | 400    | 0.677             | 0.674                  | 0.817                 | 0.817 | 1.009              | 0.874           | 0.586                  | 0.807            | 0.807             | 0.969                 |
|       | 500    | 0.660             | 0.693                  | 0.831                 | 0.831 | 1.057              | 0.852           | 0.608                  | 0.824            | 0.824             | 1.016                 |
|       | 600    | 0.691             | 0.651                  | 0.795                 | 0.795 | 1.003              | 0.892           | 0.560                  | 0.781            | 0.781             | 0.954                 |
|       | 700    | 0.702             | 0.640                  | 0.786                 | 0.786 | 0.959              | 0.907           | 0.546                  | 0.771            | 0.771             | 0.912                 |
|       | 800    | 0.619             | 0.718                  | 0.843                 | 0.843 | 0.979              | 0.800           | 0.639                  | 0.836            | 0.836             | 0.954                 |
| $L_5$ | 20/100 | 0.848             | 0.757                  | 1.023                 | 1.023 | 1.023              | 0.991           | 0.684                  | 1.032            | 1.032             | 1.032                 |
|       | 200    | 0.843             | 0.728                  | 0.980                 | 0.980 | 1.058              | 0.986           | 0.624                  | 0.938            | 0.938             | 1.001                 |
|       | 300    | 0.837             | 0.680                  | 0.912                 | 0.912 | 1.051              | 0.979           | 0.610                  | 0.911            | 0.911             | 1.030                 |
|       | 400    | 0.817             | 0.622                  | 0.822                 | 0.822 | 0.996              | 0.955           | 0.556                  | 0.815            | 0.815             | 0.965                 |
|       | 500    | 0.797             | 0.642                  | 0.838                 | 0.838 | 1.043              | 0.932           | 0.578                  | 0.831            | 0.831             | 1.009                 |
|       | 600    | 0.834             | 0.597                  | 0.798                 | 0.798 | 0.984              | 0.975           | 0.530                  | 0.789            | 0.789             | 0.948                 |
|       | 700    | 0.848             | 0.583                  | 0.788                 | 0.788 | 0.941              | 0.991           | 0.516                  | 0.779            | 0.779             | 0.909                 |
|       | 800    | 0.748             | 0.671                  | 0.848                 | 0.848 | 0.973              | 0.874           | 0.611                  | 0.841            | 0.841             | 0.952                 |
| $L_6$ | 20/100 | 0.950             | 0.716                  | 1.044                 | 1.044 | 1.044              | 1.084           | 0.621                  | 1.016            | 1.016             | 1.016                 |
|       | 200    | 0.945             | 0.688                  | 0.999                 | 0.999 | 1.070              | 1.078           | 0.566                  | 0.920            | 0.920             | 0.974                 |
|       | 300    | 0.938             | 0.644                  | 0.930                 | 0.930 | 1.058              | 1.071           | 0.565                  | 0.913            | 0.913             | 1.018                 |
|       | 400    | 0.915             | 0.590                  | 0.838                 | 0.838 | 0.999              | 1.045           | 0.521                  | 0.823            | 0.823             | 0.958                 |
|       | 500    | 0.893             | 0.612                  | 0.854                 | 0.854 | 1.045              | 1.019           | 0.543                  | 0.838            | 0.838             | 1.000                 |
|       | 600    | 0.934             | 0.564                  | 0.813                 | 0.813 | 0.984              | 1.067           | 0.496                  | 0.799            | 0.799             | 0.942                 |
|       | 700    | 0.950             | 0.549                  | 0.801                 | 0.801 | 0.942              | 1.084           | 0.483                  | 0.790            | 0.790             | 0.906                 |
|       | 800    | 0.838             | 0.645                  | 0.865                 | 0.865 | 0.983              | 0.956           | 0.578                  | 0.847            | 0.847             | 0.949                 |

Table A2.1: Numerical failure loads and their DSM estimates concerning the C<sub>2</sub> and R<sub>2</sub> columns with  $\sigma_{y20}$ =75*MPa*.

|       | T      |                 |                          | <i>C</i> <sub>2</sub>   |                   |                    |                 |                      | $R_2$                  |                   |                    |
|-------|--------|-----------------|--------------------------|-------------------------|-------------------|--------------------|-----------------|----------------------|------------------------|-------------------|--------------------|
| L     | I(C)   | $\lambda_{FTT}$ | $f_{u\pi}/\sigma_{u\pi}$ | $f_{\nu T}/f_{\nu C T}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vFET*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\nu T}/f_{\nu GT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vEET*}$ |
| $L_1$ | 20/100 | 0.708           | 0.880                    | 1.086                   | 1.086             | 1.086              | 0.928           | 0.761                | 1.090                  | 1.090             | 1.090              |
| 1     | 200    | 0.705           | 0.769                    | 0.947                   | 0.947             | 1.031              | 0.922           | 0.699                | 0.998                  | 0.998             | 1.070              |
|       | 300    | 0.700           | 0.770                    | 0.945                   | 0.945             | 1.106              | 0.916           | 0.676                | 0.961                  | 0.961             | 1.096              |
|       | 400    | 0.683           | 0.718                    | 0.873                   | 0.873             | 1.078              | 0.894           | 0.620                | 0.866                  | 0.866             | 1.037              |
|       | 500    | 0.666           | 0.733                    | 0.882                   | 0.882             | 1.121              | 0.872           | 0.640                | 0.880                  | 0.880             | 1.082              |
|       | 600    | 0.697           | 0.702                    | 0.860                   | 0.860             | 1.084              | 0.913           | 0.596                | 0.844                  | 0.844             | 1.026              |
|       | 700    | 0.708           | 0.693                    | 0.855                   | 0.855             | 1.042              | 0.928           | 0.583                | 0.835                  | 0.835             | 0.986              |
|       | 800    | 0.625           | 0.754                    | 0.888                   | 0.888             | 1.030              | 0.818           | 0.671                | 0.888                  | 0.888             | 1.011              |
| $L_2$ | 20/100 | 0.792           | 0.860                    | 1.119                   | 1.119             | 1.119              | 1.052           | 0.673                | 1.069                  | 1.069             | 1.069              |
|       | 200    | 0.788           | 0.775                    | 1.004                   | 1.004             | 1.088              | 1.046           | 0.615                | 0.972                  | 0.972             | 1.032              |
|       | 300    | 0.782           | 0.746                    | 0.963                   | 0.963             | 1.117              | 1.039           | 0.614                | 0.964                  | 0.964             | 1.080              |
|       | 400    | 0.764           | 0.686                    | 0.876                   | 0.876             | 1.070              | 1.014           | 0.571                | 0.878                  | 0.878             | 1.029              |
|       | 500    | 0.745           | 0.704                    | 0.887                   | 0.887             | 1.114              | 0.989           | 0.592                | 0.891                  | 0.891             | 1.071              |
|       | 600    | 0.779           | 0.666                    | 0.859                   | 0.859             | 1.069              | 1.035           | 0.546                | 0.855                  | 0.855             | 1.015              |
|       | 700    | 0.792           | 0.655                    | 0.852                   | 0.852             | 1.027              | 1.052           | 0.532                | 0.845                  | 0.845             | 0.976              |
|       | 800    | 0.699           | 0.729                    | 0.894                   | 0.894             | 1.031              | 0.928           | 0.626                | 0.898                  | 0.898             | 1.010              |
| $L_3$ | 20/100 | 0.885           | 0.803                    | 1.114                   | 1.114             | 1.114              | 1.160           | 0.597                | 1.049                  | 1.049             | 1.049              |
|       | 200    | 0.880           | 0.732                    | 1.013                   | 1.013             | 1.090              | 1.154           | 0.543                | 0.949                  | 0.949             | 0.997              |
|       | 300    | 0.873           | 0.707                    | 0.973                   | 0.973             | 1.117              | 1.146           | 0.557                | 0.964                  | 0.964             | 1.063              |
|       | 400    | 0.852           | 0.649                    | 0.880                   | 0.880             | 1.061              | 1.118           | 0.524                | 0.884                  | 0.884             | 1.014              |
|       | 500    | 0.831           | 0.669                    | 0.893                   | 0.893             | 1.106              | 1.090           | 0.547                | 0.899                  | 0.899             | 1.057              |
|       | 600    | 0.870           | 0.627                    | 0.860                   | 0.860             | 1.054              | 1.141           | 0.502                | 0.865                  | 0.865             | 1.003              |
|       | 700    | 0.885           | 0.614                    | 0.852                   | 0.852             | 1.013              | 1.160           | 0.489                | 0.858                  | 0.858             | 0.969              |
|       | 800    | 0.780           | 0.698                    | 0.900                   | 0.900             | 1.030              | 1.023           | 0.583                | 0.904                  | 0.904             | 1.004              |
| $L_4$ | 20/100 | 0.993           | 0.696                    | 1.052                   | 1.052             | 1.052              | 1.282           | 0.521                | 1.036                  | 1.036             | 1.036              |
|       | 200    | 0.988           | 0.656                    | 0.987                   | 0.987             | 1.053              | 1.275           | 0.473                | 0.933                  | 0.933             | 0.969              |
|       | 300    | 0.981           | 0.640                    | 0.957                   | 0.957             | 1.082              | 1.266           | 0.494                | 0.966                  | 0.966             | 1.042              |
|       | 400    | 0.957           | 0.597                    | 0.875                   | 0.875             | 1.036              | 1.236           | 0.474                | 0.898                  | 0.898             | 1.004              |
|       | 500    | 0.934           | 0.617                    | 0.888                   | 0.888             | 1.079              | 1.205           | 0.494                | 0.908                  | 0.908             | 1.038              |
|       | 600    | 0.977           | 0.574                    | 0.855                   | 0.855             | 1.027              | 1.261           | 0.455                | 0.886                  | 0.886             | 0.997              |
|       | 700    | 0.993           | 0.561                    | 0.848                   | 0.848             | 0.989              | 1.282           | 0.441                | 0.877                  | 0.877             | 0.964              |
|       | 800    | 0.876           | 0.648                    | 0.894                   | 0.894             | 1.011              | 1.131           | 0.534                | 0.911                  | 0.911             | 0.997              |
| $L_5$ | 20/100 | 1.199           | 0.570                    | 1.041                   | 1.041             | 1.041              | 1.402           | 0.457                | 1.041                  | 1.041             | 1.041              |
|       | 200    | 1.192           | 0.547                    | 0.992                   | 0.992             | 1.039              | 1.394           | 0.416                | 0.938                  | 0.938             | 0.961              |
|       | 300    | 1.184           | 0.540                    | 0.970                   | 0.970             | 1.062              | 1.384           | 0.438                | 0.977                  | 0.977             | 1.030              |
|       | 400    | 1.155           | 0.516                    | 0.902                   | 0.902             | 1.026              | 1.351           | 0.426                | 0.915                  | 0.915             | 0.994              |
|       | 500    | 1.127           | 0.536                    | 0.913                   | 0.913             | 1.064              | 1.318           | 0.445                | 0.920                  | 0.920             | 1.022              |
|       | 600    | 1.180           | 0.494                    | 0.884                   | 0.884             | 1.015              | 1.379           | 0.408                | 0.903                  | 0.903             | 0.985              |
|       | 700    | 1.199           | 0.481                    | 0.879                   | 0.879             | 0.984              | 1.402           | 0.396                | 0.900                  | 0.900             | 0.962              |
|       | 800    | 1.057           | 0.574                    | 0.917                   | 0.917             | 1.014              | 1.236           | 0.484                | 0.917                  | 0.917             | 0.986              |
| $L_6$ | 20/100 | 1.343           | 0.495                    | 1.053                   | 1.053             | 1.053              | 1.533           | 0.402                | 1.077                  | 1.057             | 1.057              |
|       | 200    | 1.336           | 0.478                    | 1.009                   | 1.009             | 1.040              | 1.525           | 0.366                | 0.969                  | 0.956             | 0.956              |
|       | 300    | 1.326           | 0.474                    | 0.989                   | 0.989             | 1.054              | 1.514           | 0.386                | 1.010                  | 1.002             | 1.002              |
|       | 400    | 1.294           | 0.461                    | 0.929                   | 0.929             | 1.023              | 1.478           | 0.379                | 0.946                  | 0.946             | 0.994              |
|       | 500    | 1.262           | 0.480                    | 0.936                   | 0.936             | 1.055              | 1.441           | 0.396                | 0.946                  | 0.946             | 1.013              |
|       | 600    | 1.321           | 0.438                    | 0.910                   | 0.910             | 1.008              | 1.509           | 0.364                | 0.943                  | 0.939             | 0.939              |
|       | 700    | 1.343           | 0.431                    | 0.917                   | 0.917             | 0.993              | 1.533           | 0.352                | 0.944                  | 0.927             | 0.927              |
|       | 800    | 1.185           | 0.474                    | 0.852                   | 0.852             | 0.924              | 1.352           | 0.434                | 0.933                  | 0.933             | 0.983              |

Table A2.2: Numerical failure loads and their DSM estimates concerning the C<sub>2</sub> and R<sub>2</sub> columns with  $\sigma_{y20}$ =150*MPa*.

|       | T (9C)          |                 |                             | <i>C</i> <sub>2</sub> |                           |                       |                 |                      | $R_2$    |                      |                        |
|-------|-----------------|-----------------|-----------------------------|-----------------------|---------------------------|-----------------------|-----------------|----------------------|----------|----------------------|------------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{\mu\pi}/\sigma_{\nu T}$ | $f_{\mu T}/f_{nGT}$   | $f_{\mu\tau}/f_{\mu FTT}$ | $f_{\mu T}/f_{nFFT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | fut/fnGT | $f_{\mu T}/f_{nFTT}$ | $f_{\mu T}/f_{nF FT*}$ |
| $L_l$ | 20/100          | 1.002           | 0.735                       | 1.118                 | 1.118                     | 1.118                 | 1.312           | 0.511                | 1.051    | 1.051                | 1.051                  |
| -     | 200             | 0.996           | 0.717                       | 1.087                 | 1.087                     | 1.159                 | 1.305           | 0.462                | 0.942    | 0.942                | 0.975                  |
|       | 300             | 0.989           | 0.681                       | 1.026                 | 1.026                     | 1.159                 | 1.295           | 0.495                | 1.000    | 1.000                | 1.073                  |
|       | 400             | 0.965           | 0.641                       | 0.947                 | 0.947                     | 1.119                 | 1.264           | 0.487                | 0.950    | 0.950                | 1.054                  |
|       | 500             | 0.942           | 0.661                       | 0.957                 | 0.957                     | 1.161                 | 1.233           | 0.507                | 0.957    | 0.957                | 1.087                  |
|       | 600             | 0.986           | 0.620                       | 0.931                 | 0.931                     | 1.116                 | 1.291           | 0.466                | 0.936    | 0.936                | 1.046                  |
|       | 700             | 1.002           | 0.607                       | 0.924                 | 0.924                     | 1.076                 | 1.312           | 0.453                | 0.932    | 0.932                | 1.017                  |
|       | 800             | 0.884           | 0.692                       | 0.959                 | 0.959                     | 1.085                 | 1.157           | 0.549                | 0.961    | 0.961                | 1.047                  |
| $L_2$ | 20/100          | 1.121           | 0.652                       | 1.103                 | 1.103                     | 1.103                 | 1.488           | 0.422                | 1.065    | 1.065                | 1.065                  |
| -     | 200             | 1.114           | 0.641                       | 1.078                 | 1.078                     | 1.138                 | 1.480           | 0.383                | 0.957    | 0.957                | 0.970                  |
|       | 300             | 1.106           | 0.618                       | 1.032                 | 1.032                     | 1.144                 | 1.469           | 0.413                | 1.019    | 1.019                | 1.055                  |
|       | 400             | 1.080           | 0.589                       | 0.960                 | 0.960                     | 1.110                 | 1.434           | 0.411                | 0.972    | 0.972                | 1.033                  |
|       | 500             | 1.053           | 0.611                       | 0.972                 | 0.972                     | 1.152                 | 1.398           | 0.430                | 0.974    | 0.974                | 1.057                  |
|       | 600             | 1.102           | 0.567                       | 0.942                 | 0.942                     | 1.102                 | 1.464           | 0.394                | 0.966    | 0.966                | 1.027                  |
|       | 700             | 1.121           | 0.553                       | 0.935                 | 0.935                     | 1.065                 | 1.488           | 0.384                | 0.970    | 0.970                | 1.013                  |
|       | 800             | 0.988           | 0.649                       | 0.976                 | 0.976                     | 1.090                 | 1.312           | 0.471                | 0.969    | 0.969                | 1.029                  |
| $L_3$ | 20/100          | 1.251           | 0.558                       | 1.075                 | 1.075                     | 1.075                 | 1.641           | 0.366                | 1.123    | 1.043                | 1.043                  |
| 5     | 200             | 1.244           | 0.552                       | 1.055                 | 1.055                     | 1.099                 | 1.632           | 0.333                | 1.011    | 0.943                | 0.943                  |
|       | 300             | 1.235           | 0.539                       | 1.020                 | 1.020                     | 1.107                 | 1.620           | 0.358                | 1.071    | 1.005                | 1.005                  |
|       | 400             | 1.206           | 0.525                       | 0.965                 | 0.965                     | 1.086                 | 1.581           | 0.358                | 1.019    | 0.976                | 0.976                  |
|       | 500             | 1.176           | 0.546                       | 0.974                 | 0.974                     | 1.123                 | 1.542           | 0.374                | 1.013    | 0.990                | 0.990                  |
|       | 600             | 1 231           | 0.504                       | 0.950                 | 0.950                     | 1.078                 | 1 614           | 0.343                | 1 019    | 0.959                | 0.959                  |
|       | 700             | 1.251           | 0.489                       | 0.942                 | 0.942                     | 1.070                 | 1.641           | 0.333                | 1.019    | 0.951                | 0.951                  |
|       | 800             | 1 103           | 0.588                       | 0.979                 | 0.979                     | 1.075                 | 1 447           | 0.333                | 0.989    | 0.989                | 1.023                  |
| L_    | 20/100          | 1 405           | 0.300                       | 1.076                 | 1.076                     | 1.075                 | 1.813           | 0.320                | 1 201    | 1.028                | 1.028                  |
| 124   | 200             | 1 397           | 0.467                       | 1.076                 | 1.076                     | 1.070                 | 1.803           | 0.294                | 1.089    | 0.936                | 0.936                  |
|       | 300             | 1.387           | 0.459                       | 1.026                 | 1.026                     | 1.081                 | 1.790           | 0.312                | 1.141    | 0.987                | 0.987                  |
|       | 400             | 1.354           | 0.455                       | 0.979                 | 0.979                     | 1.063                 | 1.747           | 0.311                | 1.083    | 0.956                | 0.956                  |
|       | 500             | 1.320           | 0.474                       | 0.983                 | 0.983                     | 1.091                 | 1.704           | 0.324                | 1.074    | 0.967                | 0.967                  |
|       | 600             | 1.382           | 0.436                       | 0.970                 | 0.970                     | 1.056                 | 1.784           | 0.300                | 1.087    | 0.943                | 0.943                  |
|       | 700             | 1.405           | 0.424                       | 0.967                 | 0.967                     | 1.032                 | 1.813           | 0.292                | 1.096    | 0.938                | 0.938                  |
|       | 800             | 1.239           | 0.517                       | 0.983                 | 0.983                     | 1.057                 | 1.599           | 0.358                | 1.043    | 0.989                | 0.989                  |
| Le    | 20/100          | 1 696           | 0.358                       | 1 175                 | 1.061                     | 1.061                 | 1 983           | 0.289                | 1 293    | 1 029                | 1.029                  |
| 25    | 200             | 1.686           | 0.355                       | 1.150                 | 1.043                     | 1.043                 | 1.971           | 0.268                | 1.186    | 0.948                | 0.948                  |
|       | 300             | 1.674           | 0.349                       | 1.116                 | 1.018                     | 1.018                 | 1.958           | 0.280                | 1.224    | 0.984                | 0.984                  |
|       | 400             | 1.634           | 0.348                       | 1.060                 | 0.987                     | 0.987                 | 1.910           | 0.278                | 1.159    | 0.950                | 0.950                  |
|       | 500             | 1 594           | 0.362                       | 1.050                 | 0.998                     | 0.998                 | 1 863           | 0.289                | 1 144    | 0.957                | 0.957                  |
|       | 600             | 1.668           | 0.335                       | 1.064                 | 0.974                     | 0.974                 | 1.950           | 0.269                | 1.167    | 0.941                | 0.941                  |
|       | 700             | 1.696           | 0.327                       | 1.072                 | 0.968                     | 0.968                 | 1.983           | 0.263                | 1.179    | 0.938                | 0.938                  |
|       | 800             | 1.496           | 0.398                       | 1.015                 | 1.015                     | 1.040                 | 1.748           | 0.315                | 1.099    | 0.969                | 0.969                  |
|       | 20/100          | 1 900           | 0.313                       | 1 289                 | 1.060                     | 1.060                 | 2 169           | 0.262                | 1 407    | 1 040                | 1.040                  |
| -0    | 200             | 1.889           | 0.309                       | 1.259                 | 1.041                     | 1.041                 | 2.157           | 0.244                | 1.296    | 0.962                | 0.962                  |
|       | 300             | 1.876           | 0.304                       | 1 220                 | 1 014                     | 1 014                 | 2.141           | 0.254                | 1 329    | 0.993                | 0.993                  |
|       | 400             | 1.831           | 0.303                       | 1.156                 | 0.981                     | 0.981                 | 2.090           | 0.252                | 1.255    | 0.956                | 0.956                  |
|       | 500             | 1.785           | 0.314                       | 1.142                 | 0.989                     | 0.989                 | 2.038           | 0.260                | 1.234    | 0.959                | 0.959                  |
|       | 600             | 1.869           | 0.292                       | 1.164                 | 0.970                     | 0.970                 | 2,133           | 0.244                | 1.269    | 0.950                | 0.950                  |
|       | 700             | 1.900           | 0.284                       | 1.168                 | 0.961                     | 0.961                 | 2.169           | 0.240                | 1.285    | 0.950                | 0.950                  |
|       | 800             | 1.675           | 0.343                       | 1.097                 | 1.001                     | 1.001                 | 1.913           | 0.282                | 1.174    | 0.962                | 0.962                  |
|       |                 |                 |                             |                       |                           |                       |                 |                      |          |                      |                        |

Table A2.3: Numerical failure loads and their DSM estimates concerning the C<sub>2</sub> and R<sub>2</sub> columns with  $\sigma_{y20}$ =450*MPa*.

|       | T (9C)           |                 |                      | <i>C</i> <sub>2</sub>   |           |                    |                 |                      | $R_2$                    |                   |                    |
|-------|------------------|-----------------|----------------------|-------------------------|-----------|--------------------|-----------------|----------------------|--------------------------|-------------------|--------------------|
| L     | $I(\mathcal{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu T}/f_{\mu G T}$ | fut/fnFTT | $f_{uT}/f_{vFFT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu\tau}/f_{\mu GT}$ | $f_{uT}/f_{nETT}$ | $f_{uT}/f_{vEET*}$ |
| $L_l$ | 20/100           | 1.227           | 0.562                | 1.056                   | 1.056     | 1.056              | 1.607           | 0.369                | 1.085                    | 1.025             | 1.025              |
|       | 200              | 1.220           | 0.561                | 1.047                   | 1.047     | 1.094              | 1.598           | 0.337                | 0.979                    | 0.930             | 0.930              |
|       | 300              | 1.212           | 0.556                | 1.028                   | 1.028     | 1.120              | 1.586           | 0.365                | 1.047                    | 0.999             | 0.999              |
|       | 400              | 1.182           | 0.549                | 0.986                   | 0.986     | 1.116              | 1.548           | 0.370                | 1.010                    | 0.984             | 0.984              |
|       | 500              | 1.153           | 0.571                | 0.996                   | 0.996     | 1.154              | 1.510           | 0.387                | 1.005                    | 0.999             | 0.999              |
|       | 600              | 1.207           | 0.528                | 0.972                   | 0.972     | 1.109              | 1.581           | 0.355                | 1.011                    | 0.968             | 0.968              |
|       | 700              | 1.227           | 0.515                | 0.967                   | 0.967     | 1.076              | 1.607           | 0.345                | 1.016                    | 0.959             | 0.959              |
|       | 800              | 1.082           | 0.615                | 1.004                   | 1.004     | 1.106              | 1.417           | 0.429                | 0.994                    | 0.994             | 1.035              |
| $L_2$ | 20/100           | 1.372           | 0.482                | 1.060                   | 1.060     | 1.060              | 1.822           | 0.314                | 1.190                    | 1.014             | 1.014              |
|       | 200              | 1.365           | 0.481                | 1.049                   | 1.049     | 1.079              | 1.812           | 0.290                | 1.086                    | 0.930             | 0.930              |
|       | 300              | 1.355           | 0.477                | 1.030                   | 1.030     | 1.092              | 1.799           | 0.308                | 1.138                    | 0.980             | 0.980              |
|       | 400              | 1.322           | 0.479                | 0.995                   | 0.995     | 1.089              | 1.756           | 0.310                | 1.091                    | 0.958             | 0.958              |
|       | 500              | 1.290           | 0.499                | 1.001                   | 1.001     | 1.120              | 1.713           | 0.323                | 1.080                    | 0.968             | 0.968              |
|       | 600              | 1.350           | 0.460                | 0.986                   | 0.986     | 1.083              | 1.793           | 0.300                | 1.099                    | 0.949             | 0.949              |
|       | 700              | 1.372           | 0.447                | 0.983                   | 0.983     | 1.057              | 1.822           | 0.293                | 1.110                    | 0.946             | 0.946              |
|       | 800              | 1.210           | 0.546                | 1.008                   | 1.008     | 1.088              | 1.607           | 0.356                | 1.050                    | 0.991             | 0.991              |
| $L_3$ | 20/100           | 1.532           | 0.407                | 1.089                   | 1.069     | 1.069              | 2.010           | 0.282                | 1.297                    | 1.020             | 1.020              |
|       | 200              | 1.524           | 0.405                | 1.071                   | 1.057     | 1.057              | 1.998           | 0.262                | 1.192                    | 0.942             | 0.942              |
|       | 300              | 1.513           | 0.401                | 1.046                   | 1.038     | 1.038              | 1.984           | 0.275                | 1.235                    | 0.982             | 0.982              |
|       | 400              | 1.476           | 0.404                | 1.005                   | 1.005     | 1.056              | 1.937           | 0.277                | 1.183                    | 0.959             | 0.959              |
|       | 500              | 1.440           | 0.421                | 1.002                   | 1.002     | 1.074              | 1.889           | 0.286                | 1.164                    | 0.963             | 0.963              |
|       | 600              | 1.507           | 0.388                | 1.006                   | 1.002     | 1.002              | 1.977           | 0.269                | 1.197                    | 0.955             | 0.955              |
|       | 700              | 1.532           | 0.378                | 1.012                   | 0.994     | 0.994              | 2.010           | 0.263                | 1.213                    | 0.954             | 0.954              |
|       | 800              | 1.351           | 0.462                | 0.991                   | 0.991     | 1.045              | 1.772           | 0.311                | 1.115                    | 0.972             | 0.972              |
| $L_4$ | 20/100           | 1.720           | 0.353                | 1.190                   | 1.062     | 1.062              | 2.221           | 0.254                | 1.430                    | 1.037             | 1.037              |
|       | 200              | 1.711           | 0.350                | 1.167                   | 1.047     | 1.047              | 2.208           | 0.238                | 1.322                    | 0.963             | 0.963              |
|       | 300              | 1.699           | 0.346                | 1.137                   | 1.026     | 1.026              | 2.193           | 0.249                | 1.366                    | 1.000             | 1.000              |
|       | 400              | 1.658           | 0.347                | 1.088                   | 1.001     | 1.001              | 2.140           | 0.249                | 1.302                    | 0.973             | 0.973              |
|       | 500              | 1.617           | 0.361                | 1.076                   | 1.011     | 1.011              | 2.087           | 0.257                | 1.276                    | 0.973             | 0.973              |
|       | 600              | 1.692           | 0.335                | 1.094                   | 0.990     | 0.990              | 2.185           | 0.243                | 1.323                    | 0.972             | 0.972              |
|       | 700              | 1.720           | 0.326                | 1.102                   | 0.983     | 0.983              | 2.221           | 0.239                | 1.343                    | 0.973             | 0.973              |
|       | 800              | 1.517           | 0.386                | 1.012                   | 1.002     | 1.002              | 1.959           | 0.276                | 1.208                    | 0.971             | 0.971              |
| $L_5$ | 20/100           | 2.077           | 0.280                | 1.376                   | 1.052     | 1.052              | 2.428           | 0.233                | 1.569                    | 1.058             | 1.058              |
|       | 200              | 2.065           | 0.277                | 1.350                   | 1.036     | 1.036              | 2.415           | 0.218                | 1.452                    | 0.983             | 0.983              |
|       | 300              | 2.051           | 0.274                | 1.316                   | 1.016     | 1.016              | 2.398           | 0.228                | 1.496                    | 1.019             | 1.019              |
|       | 400              | 2.001           | 0.275                | 1.258                   | 0.991     | 0.991              | 2.340           | 0.229                | 1.430                    | 0.994             | 0.994              |
|       | 500              | 1.952           | 0.285                | 1.237                   | 0.995     | 0.995              | 2.282           | 0.235                | 1.398                    | 0.991             | 0.991              |
|       | 600              | 2.043           | 0.265                | 1.261                   | 0.977     | 0.977              | 2.389           | 0.224                | 1.454                    | 0.993             | 0.993              |
|       | 700              | 2.077           | 0.262                | 1.288                   | 0.984     | 0.984              | 2.428           | 0.220                | 1.477                    | 0.995             | 0.995              |
|       | 800              | 1.832           | 0.337                | 1.291                   | 1.094     | 1.094              | 2.141           | 0.251                | 1.314                    | 0.981             | 0.981              |
| $L_6$ | 20/100           | 2.327           | 0.244                | 1.503                   | 1.046     | 1.046              | 2.656           | 0.213                | 1.710                    | 1.071             | 1.071              |
|       | 200              | 2.314           | 0.242                | 1.476                   | 1.032     | 1.032              | 2.641           | 0.200                | 1.592                    | 1.001             | 1.001              |
|       | 300              | 2.297           | 0.239                | 1.440                   | 1.012     | 1.012              | 2.623           | 0.210                | 1.645                    | 1.041             | 1.041              |
|       | 400              | 2.242           | 0.240                | 1.377                   | 0.988     | 0.988              | 2.559           | 0.211                | 1.573                    | 1.015             | 1.015              |
|       | 500              | 2.187           | 0.248                | 1.355                   | 0.992     | 0.992              | 2.496           | 0.216                | 1.537                    | 1.013             | 1.013              |
|       | 600              | 2.289           | 0.233                | 1.393                   | 0.982     | 0.982              | 2.613           | 0.205                | 1.598                    | 1.014             | 1.014              |
|       | 700              | 2.327           | 0.229                | 1.412                   | 0.983     | 0.983              | 2.656           | 0.202                | 1.622                    | 1.016             | 1.016              |
|       | 800              | 2.052           | 0.269                | 1.291                   | 0.996     | 0.996              | 2.342           | 0.230                | 1.441                    | 1.000             | 1.000              |

Table A2.4: Numerical failure loads and their DSM estimates concerning the C<sub>2</sub> and R<sub>2</sub> columns with  $\sigma_{y20}$ =450*MPa*.

|       | T          |                 |                              | <i>C</i> <sub>2</sub> |                   |                       |                 |                        | $R_2$            |                   |                    |
|-------|------------|-----------------|------------------------------|-----------------------|-------------------|-----------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | I(C)       | $\lambda_{FTT}$ | $f_{\pi\pi}/\sigma_{\pi\pi}$ | $f_{uT}/f_{uCT}$      | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uF} = FT*$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uFTT}$ | $f_{uT}/f_{uFFT*}$ |
| $L_1$ | 20/100     | 1.417           | 0.440                        | 1.020                 | 1.020             | 1.020                 | 1.855           | 0.304                  | 1.193            | 1.002             | 1.002              |
| -1    | 200        | 1.409           | 0.443                        | 1.018                 | 1.018             | 1.041                 | 1.845           | 0.282                  | 1.094            | 0.923             | 0.923              |
|       | 300        | 1.399           | 0.445                        | 1.010                 | 1.010             | 1.061                 | 1.832           | 0.300                  | 1.148            | 0.974             | 0.974              |
|       | 400        | 1.365           | 0.455                        | 0.993                 | 0.993             | 1.075                 | 1.788           | 0.303                  | 1.103            | 0.955             | 0.955              |
|       | 500        | 1.332           | 0.475                        | 0.998                 | 0.998             | 1.104                 | 1.744           | 0.313                  | 1.086            | 0.960             | 0.960              |
|       | 600        | 1.394           | 0.437                        | 0.986                 | 0.986             | 1.070                 | 1.825           | 0.294                  | 1.118            | 0.952             | 0.952              |
|       | 700        | 1.417           | 0.425                        | 0.985                 | 0.985             | 1.048                 | 1.855           | 0.289                  | 1.132            | 0.951             | 0.951              |
|       | 800        | 1.250           | 0.525                        | 1.009                 | 1.009             | 1.082                 | 1.636           | 0.344                  | 1.051            | 0.979             | 0.979              |
| $L_2$ | 20/100     | 1.585           | 0.385                        | 1.101                 | 1.052             | 1.052                 | 2.104           | 0.266                  | 1.341            | 1.016             | 1.016              |
|       | 200        | 1.576           | 0.383                        | 1.084                 | 1.040             | 1.040                 | 2.093           | 0.248                  | 1.238            | 0.943             | 0.943              |
|       | 300        | 1.565           | 0.382                        | 1.066                 | 1.029             | 1.029                 | 2.078           | 0.262                  | 1.290            | 0.987             | 0.987              |
|       | 400        | 1.527           | 0.389                        | 1.034                 | 1.018             | 1.018                 | 2.028           | 0.264                  | 1.237            | 0.966             | 0.966              |
|       | 500        | 1.489           | 0.406                        | 1.027                 | 1.027             | 1.085                 | 1.978           | 0.272                  | 1.213            | 0.967             | 0.967              |
|       | 600        | 1.559           | 0.374                        | 1.037                 | 1.004             | 1.004                 | 2.070           | 0.258                  | 1.258            | 0.966             | 0.966              |
|       | 700        | 1.585           | 0.364                        | 1.042                 | 0.995             | 0.995                 | 2.104           | 0.253                  | 1.277            | 0.967             | 0.967              |
|       | 800        | 1.398           | 0.449                        | 1.018                 | 1.018             | 1.063                 | 1.856           | 0.294                  | 1.153            | 0.968             | 0.968              |
| $L_3$ | 20/100     | 1.769           | 0.337                        | 1.204                 | 1.050             | 1.050                 | 2.320           | 0.241                  | 1.481            | 1.036             | 1.036              |
|       | 200        | 1.759           | 0.336                        | 1.184                 | 1.038             | 1.038                 | 2.308           | 0.226                  | 1.372            | 0.964             | 0.964              |
|       | 300        | 1.747           | 0.333                        | 1.160                 | 1.022             | 1.022                 | 2.291           | 0.238                  | 1.425            | 1.007             | 1.007              |
|       | 400        | 1.705           | 0.337                        | 1.117                 | 1.004             | 1.004                 | 2.236           | 0.240                  | 1.366            | 0.985             | 0.985              |
|       | 500        | 1.663           | 0.350                        | 1.102                 | 1.012             | 1.012                 | 2.181           | 0.247                  | 1.338            | 0.985             | 0.985              |
|       | 600        | 1.740           | 0.326                        | 1.128                 | 0.997             | 0.997                 | 2.283           | 0.234                  | 1.392            | 0.987             | 0.987              |
|       | 700        | 1.769           | 0.319                        | 1.140                 | 0.994             | 0.994                 | 2.320           | 0.230                  | 1.413            | 0.988             | 0.988              |
|       | 800        | 1.560           | 0.384                        | 1.066                 | 1.031             | 1.031                 | 2.046           | 0.264                  | 1.261            | 0.977             | 0.977              |
| $L_4$ | 20/100     | 1.987           | 0.296                        | 1.330                 | 1.055             | 1.055                 | 2.564           | 0.220                  | 1.646            | 1.061             | 1.061              |
|       | 200        | 1.975           | 0.294                        | 1.308                 | 1.042             | 1.042                 | 2.550           | 0.205                  | 1.522            | 0.986             | 0.986              |
|       | 300        | 1.962           | 0.292                        | 1.281                 | 1.026             | 1.026                 | 2.532           | 0.217                  | 1.585            | 1.032             | 1.032              |
|       | 400        | 1.914           | 0.295                        | 1.232                 | 1.007             | 1.007                 | 2.471           | 0.218                  | 1.520            | 1.010             | 1.010              |
|       | 500        | 1.867           | 0.305                        | 1.211                 | 1.010             | 1.010                 | 2.410           | 0.225                  | 1.488            | 1.009             | 1.009              |
|       | 600        | 1.954           | 0.286                        | 1.247                 | 1.002             | 1.002                 | 2.523           | 0.213                  | 1.548            | 1.011             | 1.011              |
|       | 700        | 1.987           | 0.281                        | 1.262                 | 1.001             | 1.001                 | 2.564           | 0.210                  | 1.572            | 1.013             | 1.013              |
|       | 800        | 1.752           | 0.330                        | 1.155                 | 1.016             | 1.016                 | 2.262           | 0.239                  | 1.396            | 0.997             | 0.997              |
| $L_5$ | 20/100     | 2.398           | 0.235                        | 1.544                 | 1.048             | 1.048                 | 2.804           | 0.191                  | 1.710            | 1.025             | 1.025              |
|       | 200        | 2.385           | 0.234                        | 1.519                 | 1.036             | 1.036                 | 2.788           | 0.188                  | 1.665            | 1.002             | 1.002              |
|       | 300        | 2.368           | 0.233                        | 1.488                 | 1.021             | 1.021                 | 2.768           | 0.199                  | 1.739            | 1.053             | 1.053              |
|       | 400        | 2.511           | 0.255                        | 1.452                 | 1.002             | 1.002                 | 2.702           | 0.201                  | 1.0/1            | 1.032             | 1.032              |
|       | 500        | 2.254           | 0.243                        | 1.408                 | 1.006             | 1.006                 | 2.635           | 0.206                  | 1.035            | 1.030             | 1.030              |
|       | 700        | 2.339           | 0.228                        | 1.448                 | 0.996             | 0.990                 | 2.758           | 0.190                  | 1.099            | 1.031             | 1.031              |
|       | 700<br>800 | 2.398           | 0.224                        | 1.400                 | 0.995             | 0.995                 | 2.804           | 0.192                  | 1.725            | 1.052             | 1.052              |
| I     | 20/100     | 2.113           | 0.202                        | 1.550                 | 1.000             | 1.000                 | 2.473           | 0.220                  | 1.333            | 1.019             | 1.019              |
| $L_6$ | 20/100     | 2.080           | 0.202                        | 1.001                 | 1.020             | 1.020                 | 3.007           | 0.175                  | 1.001            | 1.047             | 1.047              |
|       | 200        | 2.072           | 0.202                        | 1.042                 | 1.019             | 1.019                 | 3.030           | 0.170                  | 1.005            | 1.009             | 1.009              |
|       | 400        | 2.055           | 0.201                        | 1.009                 | 0.000             | 0 000                 | 2 925           | 0.101                  | 1.090            | 1.000             | 1.000              |
|       | 500        | 2.505           | 0.203                        | 1.555                 | 0.990             | 0.990                 | 2.955           | 0.105                  | 1.325            | 1.047             | 1.047              |
|       | 600        | 2.525           | 0.197                        | 1.552                 | 0.981             | 0.991                 | 3.017           | 0.109                  | 1.760            | 1.047             | 1.047              |
|       | 700        | 2.686           | 0.197                        | 1.500                 | 0.976             | 0.976                 | 3.067           | 0.175                  | 1.875            | 1.044             | 1.044              |
|       | 800        | 2.369           | 0.228                        | 1.460                 | 1.001             | 1.001                 | 2.705           | 0.202                  | 1.685            | 1.039             | 1.039              |
|       |            |                 |                              |                       |                   |                       |                 |                        |                  |                   |                    |

Table A2.5: Numerical failure loads and their DSM estimates concerning the C<sub>2</sub> and R<sub>2</sub> columns with  $\sigma_{y20}$ =600*MPa*.

|       | T          |                   |                        | Сз               |                   |                    |                 |                        | <b>R</b> 3       |                   |                    |
|-------|------------|-------------------|------------------------|------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | I(C)       | λ <sub>ET T</sub> | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uEET*}$ | $\lambda_{ETT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uEET*}$ |
| $L_1$ | 20/100     | 0.478             | 0.944                  | 1.039            | 1.039             | 1.039              | 0.797           | 0.815                  | 1.064            | <u>1.064</u>      | 1.064              |
| -1    | 200        | 0.476             | 0.885                  | 0.973            | 0.973             | 1.072              | 0.792           | 0.747                  | 0.971            | 0.971             | 1.052              |
|       | 300        | 0.472             | 0.825                  | 0.906            | 0.906             | 1.081              | 0.787           | 0.695                  | 0.900            | 0.900             | 1.044              |
|       | 400        | 0.461             | 0.782                  | 0.855            | 0.855             | 1.081              | 0.768           | 0.622                  | 0.796            | 0.796             | 0.972              |
|       | 500        | 0.450             | 0.792                  | 0.862            | 0.862             | 1.123              | 0.749           | 0.644                  | 0.814            | 0.814             | 1.021              |
|       | 600        | 0.471             | 0.770                  | 0.845            | 0.845             | 1.094              | 0.784           | 0.596                  | 0.770            | 0.770             | 0.958              |
|       | 700        | 0.478             | 0.764                  | 0.840            | 0.840             | 1.050              | 0.797           | 0.582                  | 0.760            | 0.760             | 0.915              |
|       | 800        | 0.422             | 0.807                  | 0.869            | 0.869             | 1.023              | 0.703           | 0.672                  | 0.826            | 0.826             | 0.952              |
| $L_2$ | 20/100     | 0.546             | 0.929                  | 1.053            | 1.053             | 1.053              | 0.920           | 0.737                  | 1.051            | 1.051             | 1.051              |
|       | 200        | 0.543             | 0.870                  | 0.984            | 0.984             | 1.081              | 0.915           | 0.672                  | 0.954            | 0.954             | 1.025              |
|       | 300        | 0.540             | 0.804                  | 0.908            | 0.908             | 1.079              | 0.909           | 0.644                  | 0.909            | 0.909             | 1.038              |
|       | 400        | 0.527             | 0.751                  | 0.843            | 0.843             | 1.060              | 0.887           | 0.581                  | 0.807            | 0.807             | 0.967              |
|       | 500        | 0.514             | 0.764                  | 0.853            | 0.853             | 1.104              | 0.865           | 0.603                  | 0.825            | 0.825             | 1.015              |
|       | 600        | 0.537             | 0.735                  | 0.829            | 0.829             | 1.066              | 0.906           | 0.554                  | 0.780            | 0.780             | 0.950              |
|       | 700        | 0.546             | 0.727                  | 0.823            | 0.823             | 1.022              | 0.920           | 0.539                  | 0.769            | 0.769             | 0.908              |
|       | 800        | 0.482             | 0.782                  | 0.862            | 0.862             | 1.011              | 0.812           | 0.634                  | 0.836            | 0.836             | 0.953              |
| $L_3$ | 20/100     | 0.611             | 0.912                  | 1.066            | 1.066             | 1.066              | 1.043           | 0.651                  | 1.027            | 1.027             | 1.027              |
|       | 200        | 0.607             | 0.854                  | 0.996            | 0.996             | 1.091              | 1.037           | 0.593                  | 0.930            | 0.930             | 0.989              |
|       | 300        | 0.603             | 0.786                  | 0.915            | 0.915             | 1.081              | 1.030           | 0.588                  | 0.916            | 0.916             | 1.028              |
|       | 400        | 0.589             | 0.725                  | 0.838            | 0.838             | 1.047              | 1.005           | 0.537                  | 0.820            | 0.820             | 0.962              |
|       | 500        | 0.574             | 0.741                  | 0.851            | 0.851             | 1.093              | 0.980           | 0.560                  | 0.836            | 0.836             | 1.007              |
|       | 600        | 0.601             | 0.706                  | 0.821            | 0.821             | 1.048              | 1.026           | 0.511                  | 0.794            | 0.794             | 0.945              |
|       | 700        | 0.611             | 0.696                  | 0.814            | 0.814             | 1.003              | 1.043           | 0.497                  | 0.784            | 0.784             | 0.906              |
|       | 800        | 0.539             | 0.762                  | 0.861            | 0.861             | 1.006              | 0.920           | 0.594                  | 0.845            | 0.845             | 0.952              |
| $L_4$ | 20/100     | 0.671             | 0.893                  | 1.078            | 1.078             | 1.078              | 1.162           | 0.569                  | 1.003            | 1.003             | 1.003              |
|       | 200        | 0.668             | 0.836                  | 1.008            | 1.008             | 1.100              | 1.156           | 0.518                  | 0.906            | 0.906             | 0.952              |
|       | 300        | 0.663             | 0.768                  | 0.923            | 0.923             | 1.085              | 1.148           | 0.527                  | 0.915            | 0.915             | 1.008              |
|       | 400        | 0.647             | 0.703                  | 0.837            | 0.837             | 1.038              | 1.120           | 0.491                  | 0.831            | 0.831             | 0.953              |
|       | 500        | 0.631             | 0.721                  | 0.851            | 0.851             | 1.086              | 1.093           | 0.513                  | 0.846            | 0.846             | 0.994              |
|       | 600        | 0.660             | 0.681                  | 0.817            | 0.817             | 1.035              | 1.144           | 0.468                  | 0.810            | 0.810             | 0.938              |
|       | 700        | 0.671             | 0.670                  | 0.809            | 0.809             | 0.990              | 1.162           | 0.455                  | 0.801            | 0.801             | 0.904              |
|       | 800        | 0.592             | 0.745                  | 0.862            | 0.862             | 1.004              | 1.025           | 0.549                  | 0.853            | 0.853             | 0.947              |
| $L_5$ | 20/100     | 0.728             | 0.871                  | 1.087            | 1.087             | 1.087              | 1.280           | 0.498                  | 0.989            | 0.989             | 0.989              |
|       | 200        | 0.724             | 0.818                  | 1.018            | 1.018             | 1.108              | 1.272           | 0.453                  | 0.892            | 0.892             | 0.927              |
|       | 300        | 0.719             | 0.751                  | 0.932            | 0.932             | 1.089              | 1.264           | 0.470                  | 0.917            | 0.917             | 0.990              |
|       | 400        | 0.701             | 0.683                  | 0.840            | 0.840             | 1.035              | 1.233           | 0.447                  | 0.845            | 0.845             | 0.945              |
|       | 500        | 0.684             | 0.703                  | 0.855            | 0.855             | 1.084              | 1.203           | 0.467                  | 0.855            | 0.855             | 0.979              |
|       | 000<br>700 | 0.710             | 0.038                  | 0.810            | 0.810             | 1.025              | 1.259           | 0.420                  | 0.827            | 0.827             | 0.931              |
|       | 700<br>800 | 0.728             | 0.047                  | 0.808            | 0.808             | 0.982              | 1.280           | 0.415                  | 0.820            | 0.820             | 0.902              |
|       | 20/100     | 0.042             | 0.750                  | 1.002            | 1.002             | 1.003              | 1.129           | 0.304                  | 0.039            | 0.009             | 0.940              |
| $L_6$ | 20/100     | 0.781             | 0.847                  | 1.095            | 1.093             | 1.095              | 1.394           | 0.442                  | 0.990            | 0.990             | 0.990              |
|       | 200        | 0.770             | 0.798                  | 0.041            | 0.041             | 1.115              | 1.360           | 0.401                  | 0.890            | 0.890             | 0.919              |
|       | 300<br>400 | 0.771             | 0.734                  | 0.941            | 0.941             | 1.095              | 1.370           | 0.420                  | 0.927            | 0.927             | 0.970              |
|       | 500        | 0.734             | 0.000                  | 0.045            | 0.045             | 1.035              | 1 310           | 0.403                  | 0.867            | 0.801             | 0.950              |
|       | 600        | 0.754             | 0.641                  | 0.820            | 0.820             | 1.005              | 1 371           | 0.425                  | 0.848            | 0.848             | 0.905              |
|       | 700        | 0.781             | 0.677                  | 0.809            | 0.809             | 0.977              | 1 394           | 0.374                  | 0.844            | 0.844             | 0.903              |
|       | 800        | 0.688             | 0.716                  | 0.873            | 0.873             | 1.008              | 1.229           | 0.460                  | 0.865            | 0.865             | 0.932              |
|       |            |                   |                        |                  |                   |                    | -               |                        |                  |                   |                    |

Table A3.1: Numerical failure loads and their DSM estimates concerning the C<sub>3</sub> and R<sub>3</sub> columns with  $\sigma_{y20}$ =75*MPa*.

|       | T      |                 |                          | Сз               |                   |                    |                 |                      | <b>R</b> 3             |                   |                    |
|-------|--------|-----------------|--------------------------|------------------|-------------------|--------------------|-----------------|----------------------|------------------------|-------------------|--------------------|
| L     | I(C)   | $\lambda_{FTT}$ | $f_{u\pi}/\sigma_{u\pi}$ | $f_{uT}/f_{vGT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vFET*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{uT}$ | $f_{\nu T}/f_{\nu GT}$ | $f_{uT}/f_{vETT}$ | $f_{uT}/f_{vEET*}$ |
| $L_1$ | 20/100 | 0.676           | 0.909                    | 1.101            | 1.101             | 1.101              | 1.127           | 0.620                | 1.055                  | 1.055             | 1.055              |
| 1     | 200    | 0.673           | 0.789                    | 0.953            | 0.953             | 1.040              | 1.121           | 0.563                | 0.953                  | 0.953             | 1.005              |
|       | 300    | 0.668           | 0.789                    | 0.951            | 0.951             | 1.117              | 1.113           | 0.578                | 0.970                  | 0.970             | 1.074              |
|       | 400    | 0.652           | 0.742                    | 0.887            | 0.887             | 1.099              | 1.086           | 0.542                | 0.888                  | 0.888             | 1.025              |
|       | 500    | 0.636           | 0.755                    | 0.895            | 0.895             | 1.141              | 1.059           | 0.563                | 0.901                  | 0.901             | 1.066              |
|       | 600    | 0.665           | 0.727                    | 0.875            | 0.875             | 1.108              | 1.109           | 0.517                | 0.865                  | 0.865             | 1.010              |
|       | 700    | 0.676           | 0.719                    | 0.871            | 0.871             | 1.066              | 1.127           | 0.504                | 0.857                  | 0.857             | 0.975              |
|       | 800    | 0.597           | 0.775                    | 0.899            | 0.899             | 1.046              | 0.994           | 0.601                | 0.908                  | 0.908             | 1.013              |
| $L_2$ | 20/100 | 0.773           | 0.872                    | 1.119            | 1.119             | 1.119              | 1.302           | 0.504                | 1.025                  | 1.025             | 1.025              |
|       | 200    | 0.768           | 0.785                    | 1.005            | 1.005             | 1.091              | 1.295           | 0.457                | 0.921                  | 0.921             | 0.955              |
|       | 300    | 0.763           | 0.757                    | 0.966            | 0.966             | 1.123              | 1.285           | 0.483                | 0.965                  | 0.965             | 1.037              |
|       | 400    | 0.745           | 0.702                    | 0.886            | 0.886             | 1.085              | 1.254           | 0.467                | 0.903                  | 0.903             | 1.005              |
|       | 500    | 0.726           | 0.719                    | 0.896            | 0.896             | 1.128              | 1.223           | 0.488                | 0.913                  | 0.913             | 1.039              |
|       | 600    | 0.760           | 0.683                    | 0.870            | 0.870             | 1.086              | 1.281           | 0.446                | 0.887                  | 0.887             | 0.993              |
|       | 700    | 0.773           | 0.673                    | 0.864            | 0.864             | 1.044              | 1.302           | 0.434                | 0.881                  | 0.881             | 0.964              |
|       | 800    | 0.681           | 0.745                    | 0.904            | 0.904             | 1.045              | 1.148           | 0.528                | 0.917                  | 0.917             | 1.001              |
| $L_3$ | 20/100 | 0.864           | 0.824                    | 1.126            | 1.126             | 1.126              | 1.474           | 0.417                | 1.036                  | 1.036             | 1.036              |
|       | 200    | 0.859           | 0.750                    | 1.021            | 1.021             | 1.101              | 1.466           | 0.379                | 0.931                  | 0.931             | 0.946              |
|       | 300    | 0.853           | 0.724                    | 0.982            | 0.982             | 1.129              | 1.456           | 0.404                | 0.981                  | 0.981             | 1.019              |
|       | 400    | 0.832           | 0.668                    | 0.892            | 0.892             | 1.079              | 1.421           | 0.398                | 0.927                  | 0.927             | 0.989              |
|       | 500    | 0.812           | 0.687                    | 0.905            | 0.905             | 1.124              | 1.386           | 0.416                | 0.930                  | 0.930             | 1.013              |
|       | 600    | 0.850           | 0.646                    | 0.874            | 0.874             | 1.075              | 1.451           | 0.381                | 0.919                  | 0.919             | 0.981              |
|       | 700    | 0.864           | 0.634                    | 0.866            | 0.866             | 1.033              | 1.474           | 0.369                | 0.918                  | 0.918             | 0.962              |
|       | 800    | 0.762           | 0.715                    | 0.911            | 0.911             | 1.045              | 1.300           | 0.456                | 0.925                  | 0.925             | 0.984              |
| $L_4$ | 20/100 | 0.949           | 0.768                    | 1.121            | 1.121             | 1.121              | 1.644           | 0.355                | 1.095                  | 1.033             | 1.033              |
|       | 200    | 0.944           | 0.708                    | 1.029            | 1.029             | 1.102              | 1.635           | 0.308                | 0.939                  | 0.889             | 0.889              |
|       | 300    | 0.937           | 0.687                    | 0.992            | 0.992             | 1.129              | 1.623           | 0.344                | 1.034                  | 0.983             | 0.983              |
|       | 400    | 0.915           | 0.635                    | 0.901            | 0.901             | 1.074              | 1.584           | 0.341                | 0.976                  | 0.943             | 0.943              |
|       | 500    | 0.892           | 0.655                    | 0.915            | 0.915             | 1.120              | 1.545           | 0.356                | 0.970                  | 0.952             | 0.952              |
|       | 600    | 0.934           | 0.611                    | 0.880            | 0.880             | 1.066              | 1.617           | 0.327                | 0.974                  | 0.928             | 0.928              |
|       | 700    | 0.949           | 0.598                    | 0.872            | 0.872             | 1.025              | 1.644           | 0.317                | 0.977                  | 0.922             | 0.922              |
|       | 800    | 0.837           | 0.694                    | 0.930            | 0.930             | 1.058              | 1.450           | 0.392                | 0.945                  | 0.945             | 0.978              |
| $L_5$ | 20/100 | 1.029           | 0.710                    | 1.106            | 1.106             | 1.106              | 1.810           | 0.300                | 1.119                  | 0.994             | 0.994              |
|       | 200    | 1.024           | 0.664                    | 1.030            | 1.030             | 1.096              | 1.800           | 0.271                | 1.000                  | 0.891             | 0.891              |
|       | 300    | 1.016           | 0.648                    | 0.998            | 0.998             | 1.122              | 1.787           | 0.300                | 1.091                  | 0.977             | 0.977              |
|       | 400    | 0.992           | 0.604                    | 0.911            | 0.911             | 1.072              | 1.744           | 0.297                | 1.030                  | 0.936             | 0.936              |
|       | 500    | 0.967           | 0.625                    | 0.925            | 0.925             | 1.116              | 1.701           | 0.310                | 1.023                  | 0.945             | 0.945              |
|       | 600    | 1.013           | 0.579                    | 0.889            | 0.889             | 1.060              | 1.780           | 0.284                | 1.028                  | 0.923             | 0.923              |
|       | 700    | 1.029           | 0.566                    | 0.882            | 0.882             | 1.022              | 1.810           | 0.276                | 1.032                  | 0.916             | 0.916              |
|       | 800    | 0.908           | 0.660                    | 0.932            | 0.932             | 1.051              | 1.596           | 0.342                | 0.993                  | 0.954             | 0.954              |
| $L_6$ | 20/100 | 1.104           | 0.654                    | 1.090            | 1.090             | 1.090              | 1.971           | 0.268                | 1.186                  | 0.998             | 0.998              |
|       | 200    | 1.098           | 0.621                    | 1.028            | 1.028             | 1.087              | 1.960           | 0.255                | 1.117                  | 0.943             | 0.943              |
|       | 300    | 1.090           | 0.609                    | 1.001            | 1.001             | 1.113              | 1.946           | 0.267                | 1.154                  | 0.979             | 0.979              |
|       | 400    | 1.064           | 0.574                    | 0.922            | 0.922             | 1.069              | 1.899           | 0.264                | 1.084                  | 0.934             | 0.934              |
|       | 500    | 1.037           | 0.596                    | 0.935            | 0.935             | 1.112              | 1.853           | 0.275                | 1.077                  | 0.942             | 0.942              |
|       | 600    | 1.086           | 0.550                    | 0.900            | 0.900             | 1.057              | 1.939           | 0.253                | 1.084                  | 0.921             | 0.921              |
|       | 700    | 1.104           | 0.538                    | 0.895            | 0.895             | 1.023              | 1.971           | 0.246                | 1.088                  | 0.916             | 0.916              |
|       | 800    | 0.974           | 0.634                    | 0.942            | 0.942             | 1.053              | 1.738           | 0.302                | 1.042                  | 0.949             | 0.949              |

Table A3.2: Numerical failure loads and their DSM estimates concerning the C<sub>3</sub> and R<sub>3</sub> columns with  $\sigma_{y20}$ =150*MPa*.

| I     | T (9C)          |                 |                        | Сз               |                   |                    |                 |                        | <b>R</b> 3       |                   |                    |
|-------|-----------------|-----------------|------------------------|------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{vCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ |
| $L_1$ | 20/100          | 0.957           | 0.787                  | 1.155            | 1.155             | 1.155              | 1.594           | 0.364                  | 1.053            | 1.013             | 1.013              |
| 1     | 200             | 0.951           | 0.757                  | 1.106            | 1.106             | 1.184              | 1.585           | 0.330                  | 0.944            | 0.912             | 0.912              |
|       | 300             | 0.945           | 0.712                  | 1.034            | 1.034             | 1.175              | 1.574           | 0.361                  | 1.019            | 0.988             | 0.988              |
|       | 400             | 0.922           | 0.668                  | 0.954            | 0.954             | 1.136              | 1.536           | 0.366                  | 0.983            | 0.968             | 0.968              |
|       | 500             | 0.899           | 0.687                  | 0.963            | 0.963             | 1.178              | 1.498           | 0.383                  | 0.979            | 0.979             | 1.031              |
|       | 600             | 0.941           | 0.648                  | 0.939            | 0.939             | 1.136              | 1.568           | 0.356                  | 0.997            | 0.969             | 0.969              |
|       | 700             | 0.957           | 0.636                  | 0.933            | 0.933             | 1.095              | 1.594           | 0.340                  | 0.984            | 0.946             | 0.946              |
|       | 800             | 0.844           | 0.716                  | 0.965            | 0.965             | 1.096              | 1.406           | 0.424                  | 0.969            | 0.969             | 1.011              |
| $L_2$ | 20/100          | 1.093           | 0.680                  | 1.121            | 1.121             | 1.121              | 1.841           | 0.300                  | 1.158            | 1.017             | 1.017              |
|       | 200             | 1.087           | 0.665                  | 1.090            | 1.090             | 1.154              | 1.831           | 0.274                  | 1.047            | 0.924             | 0.924              |
|       | 300             | 1.079           | 0.638                  | 1.038            | 1.038             | 1.157              | 1.818           | 0.293                  | 1.105            | 0.979             | 0.979              |
|       | 400             | 1.053           | 0.607                  | 0.965            | 0.965             | 1.122              | 1.774           | 0.295                  | 1.059            | 0.952             | 0.952              |
|       | 500             | 1.027           | 0.628                  | 0.976            | 0.976             | 1.163              | 1.730           | 0.309                  | 1.054            | 0.963             | 0.963              |
|       | 600             | 1.075           | 0.585                  | 0.948            | 0.948             | 1.116              | 1.811           | 0.284                  | 1.060            | 0.941             | 0.941              |
|       | 700             | 1.093           | 0.571                  | 0.941            | 0.941             | 1.077              | 1.841           | 0.275                  | 1.065            | 0.935             | 0.935              |
|       | 800             | 0.964           | 0.664                  | 0.979            | 0.979             | 1.097              | 1.624           | 0.342                  | 1.027            | 0.976             | 0.976              |
| $L_3$ | 20/100          | 1.222           | 0.584                  | 1.091            | 1.091             | 1.091              | 2.085           | 0.258                  | 1.278            | 1.039             | 1.039              |
|       | 200             | 1.215           | 0.576                  | 1.069            | 1.069             | 1.117              | 2.074           | 0.238                  | 1.167            | 0.951             | 0.951              |
|       | 300             | 1.206           | 0.562                  | 1.032            | 1.032             | 1.126              | 2.059           | 0.251                  | 1.212            | 0.993             | 0.993              |
|       | 400             | 1.177           | 0.546                  | 0.974            | 0.974             | 1.104              | 2.009           | 0.250                  | 1.151            | 0.957             | 0.957              |
|       | 500             | 1.148           | 0.567                  | 0.984            | 0.984             | 1.142              | 1.960           | 0.260                  | 1.138            | 0.962             | 0.962              |
|       | 600             | 1.202           | 0.524                  | 0.960            | 0.960             | 1.096              | 2.051           | 0.241                  | 1.157            | 0.950             | 0.950              |
|       | 700             | 1.222           | 0.511                  | 0.954            | 0.954             | 1.064              | 2.085           | 0.235                  | 1.167            | 0.948             | 0.948              |
|       | 800             | 1.077           | 0.609                  | 0.990            | 0.990             | 1.091              | 1.839           | 0.285                  | 1.100            | 0.967             | 0.967              |
| $L_4$ | 20/100          | 1.343           | 0.508                  | 1.080            | 1.080             | 1.080              | 2.325           | 0.229                  | 1.410            | 1.070             | 1.070              |
|       | 200             | 1.335           | 0.503                  | 1.061            | 1.061             | 1.094              | 2.312           | 0.211                  | 1.288            | 0.981             | 0.981              |
|       | 300             | 1.326           | 0.494                  | 1.031            | 1.031             | 1.099              | 2.296           | 0.222                  | 1.331            | 1.018             | 1.018              |
|       | 400             | 1.294           | 0.488                  | 0.983            | 0.983             | 1.083              | 2.240           | 0.220                  | 1.259            | 0.977             | 0.977              |
|       | 500             | 1.262           | 0.508                  | 0.990            | 0.990             | 1.116              | 2.185           | 0.228                  | 1.242            | 0.979             | 0.979              |
|       | 600             | 1.321           | 0.468                  | 0.972            | 0.972             | 1.077              | 2.287           | 0.213                  | 1.268            | 0.972             | 0.972              |
|       | 700             | 1.343           | 0.456                  | 0.969            | 0.969             | 1.050              | 2.325           | 0.208                  | 1.281            | 0.972             | 0.972              |
|       | 800             | 1.184           | 0.553                  | 0.994            | 0.994             | 1.078              | 2.050           | 0.248                  | 1.187            | 0.975             | 0.975              |
| $L_5$ | 20/100          | 1.456           | 0.449                  | 1.091            | 1.091             | 1.091              | 2.559           | 0.206                  | 1.538            | 1.098             | 1.098              |
|       | 200             | 1.448           | 0.445                  | 1.071            | 1.071             | 1.090              | 2.545           | 0.190                  | 1.403            | 1.005             | 1.005              |
|       | 300             | 1.437           | 0.439                  | 1.042            | 1.042             | 1.086              | 2.527           | 0.199                  | 1.449            | 1.043             | 1.043              |
|       | 400             | 1.403           | 0.437                  | 0.996            | 0.996             | 1.068              | 2.466           | 0.197                  | 1.369            | 1.001             | 1.001              |
|       | 500             | 1.368           | 0.456                  | 0.998            | 0.998             | 1.093              | 2.405           | 0.204                  | 1.349            | 1.002             | 1.002              |
|       | 600             | 1.432           | 0.420                  | 0.990            | 0.990             | 1.063              | 2.518           | 0.191                  | 1.381            | 0.997             | 0.997              |
|       | 700             | 1.456           | 0.408                  | 0.991            | 0.991             | 1.044              | 2.559           | 0.187                  | 1.396            | 0.997             | 0.997              |
|       | 800             | 1.284           | 0.500                  | 0.996            | 0.996             | 1.062              | 2.257           | 0.221                  | 1.284            | 0.993             | 0.993              |
| $L_6$ | 20/100          | 1.561           | 0.403                  | 1.120            | 1.088             | 1.088              | 2.788           | 0.187                  | 1.654            | 1.119             | 1.119              |
|       | 200             | 1.552           | 0.400                  | 1.099            | 1.071             | 1.071              | 2.772           | 0.172                  | 1.504            | 1.022             | 1.022              |
|       | 300             | 1.541           | 0.395                  | 1.069            | 1.048             | 1.048              | 2.753           | 0.181                  | 1.559            | 1.064             | 1.064              |
|       | 400             | 1.504           | 0.395                  | 1.020            | 1.017             | 1.017              | 2.686           | 0.179                  | 1.475            | 1.022             | 1.022              |
|       | 500             | 1.467           | 0.413                  | 1.016            | 1.016             | 1.080              | 2.620           | 0.186                  | 1.453            | 1.022             | 1.022              |
|       | 600             | 1.536           | 0.380                  | 1.021            | 1.003             | 1.003              | 2.742           | 0.173                  | 1.488            | 1.017             | 1.017              |
|       | 700             | 1.561           | 0.369                  | 1.026            | 0.996             | 0.996              | 2.788           | 0.186                  | 1.646            | 1.114             | 1.114              |
|       | 800             | 1.377           | 0.452                  | 1.000            | 1.000             | 1.049              | 2.458           | 0.200                  | 1.382            | 1.012             | 1.012              |

Table A3.3: Numerical failure loads and their DSM estimates concerning the C<sub>3</sub> and R<sub>3</sub> columns with  $\sigma_{y20}$ =300*MPa*.

|       | T      |                 |                        | Сз               |                   |                    |                 |                        | <b>R</b> 3       |                   |                    |
|-------|--------|-----------------|------------------------|------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | I(C)   | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uFTT}$ | $f_{uT}/f_{uFFT*}$ |
| $L_1$ | 20/100 | 1.172           | 0.617                  | 1.096            | 1.096             | 1.096              | 1.952           | 0.272                  | 1.180            | 0.999             | 0.999              |
| -1    | 200    | 1.165           | 0.614                  | 1.084            | 1.084             | 1.139              | 1.941           | 0.250                  | 1.076            | 0.915             | 0.915              |
|       | 300    | 1.157           | 0.601                  | 1.053            | 1.053             | 1.158              | 1.927           | 0.267                  | 1.130            | 0.965             | 0.965              |
|       | 400    | 1.129           | 0.586                  | 0.999            | 0.999             | 1.143              | 1.881           | 0.269                  | 1.083            | 0.939             | 0.939              |
|       | 500    | 1.101           | 0.607                  | 1.009            | 1.009             | 1.183              | 1.835           | 0.279                  | 1.070            | 0.943             | 0.943              |
|       | 600    | 1.153           | 0.565                  | 0.985            | 0.985             | 1.138              | 1.920           | 0.260                  | 1.092            | 0.935             | 0.935              |
|       | 700    | 1.172           | 0.551                  | 0.979            | 0.979             | 1.103              | 1.952           | 0.254                  | 1.103            | 0.934             | 0.934              |
|       | 800    | 1.033           | 0.649                  | 1.014            | 1.014             | 1.125              | 1.721           | 0.308                  | 1.042            | 0.955             | 0.955              |
| $L_2$ | 20/100 | 1.338           | 0.510                  | 1.080            | 1.080             | 1.080              | 2.255           | 0.233                  | 1.348            | 1.043             | 1.043              |
|       | 200    | 1.331           | 0.507                  | 1.065            | 1.065             | 1.099              | 2.242           | 0.215                  | 1.235            | 0.959             | 0.959              |
|       | 300    | 1.322           | 0.501                  | 1.041            | 1.041             | 1.111              | 2.226           | 0.228                  | 1.287            | 1.004             | 1.004              |
|       | 400    | 1.290           | 0.500                  | 1.002            | 1.002             | 1.106              | 2.173           | 0.228                  | 1.229            | 0.973             | 0.973              |
|       | 500    | 1.258           | 0.520                  | 1.009            | 1.009             | 1.139              | 2.119           | 0.236                  | 1.210            | 0.973             | 0.973              |
|       | 600    | 1.317           | 0.480                  | 0.993            | 0.993             | 1.101              | 2.218           | 0.221                  | 1.242            | 0.970             | 0.970              |
|       | 700    | 1.338           | 0.468                  | 0.989            | 0.989             | 1.073              | 2.255           | 0.217                  | 1.256            | 0.972             | 0.972              |
|       | 800    | 1.180           | 0.567                  | 1.015            | 1.015             | 1.102              | 1.988           | 0.256                  | 1.156            | 0.968             | 0.968              |
| $L_3$ | 20/100 | 1.496           | 0.432                  | 1.102            | 1.102             | 1.102              | 2.554           | 0.204                  | 1.516            | 1.084             | 1.084              |
|       | 200    | 1.488           | 0.430                  | 1.085            | 1.085             | 1.099              | 2.540           | 0.189                  | 1.387            | 0.995             | 0.995              |
|       | 300    | 1.477           | 0.425                  | 1.060            | 1.060             | 1.096              | 2.522           | 0.199                  | 1.445            | 1.042             | 1.042              |
|       | 400    | 1.442           | 0.428                  | 1.021            | 1.021             | 1.084              | 2.461           | 0.200                  | 1.379            | 1.010             | 1.010              |
|       | 500    | 1.406           | 0.446                  | 1.021            | 1.021             | 1.106              | 2.400           | 0.206                  | 1.355            | 1.008             | 1.008              |
|       | 600    | 1.472           | 0.412                  | 1.020            | 1.020             | 1.081              | 2.512           | 0.194                  | 1.395            | 1.008             | 1.008              |
|       | 700    | 1.496           | 0.400                  | 1.022            | 1.022             | 1.065              | 2.554           | 0.190                  | 1.412            | 1.010             | 1.010              |
|       | 800    | 1.319           | 0.490                  | 1.016            | 1.016             | 1.077              | 2.252           | 0.223                  | 1.288            | 0.997             | 0.997              |
| $L_4$ | 20/100 | 1.644           | 0.377                  | 1.163            | 1.088             | 1.088              | 2.847           | 0.181                  | 1.671            | 1.116             | 1.116              |
|       | 200    | 1.635           | 0.375                  | 1.143            | 1.074             | 1.074              | 2.832           | 0.167                  | 1.523            | 1.021             | 1.021              |
|       | 300    | 1.624           | 0.371                  | 1.117            | 1.054             | 1.054              | 2.812           | 0.177                  | 1.593            | 1.073             | 1.073              |
|       | 400    | 1.585           | 0.374                  | 1.071            | 1.029             | 1.029              | 2.744           | 0.177                  | 1.523            | 1.041             | 1.041              |
|       | 500    | 1.546           | 0.390                  | 1.061            | 1.038             | 1.038              | 2.676           | 0.183                  | 1.497            | 1.040             | 1.040              |
|       | 600    | 1.618           | 0.360                  | 1.074            | 1.016             | 1.016              | 2.801           | 0.172                  | 1.540            | 1.039             | 1.039              |
|       | 700    | 1.644           | 0.345                  | 1.064            | 0.996             | 0.996              | 2.847           | 0.164                  | 1.513            | 1.010             | 1.010              |
|       | 800    | 1.450           | 0.436                  | 1.051            | 1.051             | 1.087              | 2.511           | 0.198                  | 1.421            | 1.027             | 1.027              |
| $L_5$ | 20/100 | 1.783           | 0.337                  | 1.222            | 1.078             | 1.078              | 3.134           | 0.153                  | 1.710            | 1.075             | 1.075              |
|       | 200    | 1.773           | 0.335                  | 1.201            | 1.064             | 1.064              | 3.117           | 0.148                  | 1.636            | 1.033             | 1.033              |
|       | 300    | 1.761           | 0.332                  | 1.173            | 1.044             | 1.044              | 3.095           | 0.158                  | 1.723            | 1.092             | 1.092              |
|       | 400    | 1.718           | 0.334                  | 1.126            | 1.020             | 1.020              | 3.020           | 0.159                  | 1.650            | 1.062             | 1.062              |
|       | 500    | 1.676           | 0.348                  | 1.113            | 1.027             | 1.027              | 2.946           | 0.164                  | 1.625            | 1.063             | 1.063              |
|       | 600    | 1.754           | 0.323                  | 1.133            | 1.012             | 1.012              | 3.083           | 0.154                  | 1.666            | 1.058             | 1.058              |
|       | 700    | 1.783           | 0.314                  | 1.140            | 1.006             | 1.006              | 3.134           | 0.150                  | 1.682            | 1.058             | 1.058              |
|       | 800    | 1.572           | 0.379                  | 1.070            | 1.034             | 1.034              | 2.764           | 0.178                  | 1.548            | 1.053             | 1.053              |
| $L_6$ | 20/100 | 1.912           | 0.305                  | 1.270            | 1.066             | 1.066              | 3.414           | 0.144                  | 1.910            | 1.138             | 1.138              |
|       | 200    | 1.901           | 0.303                  | 1.249            | 1.053             | 1.053              | 3.395           | 0.131                  | 1.725            | 1.031             | 1.031              |
|       | 300    | 1.888           | 0.300                  | 1.220            | 1.034             | 1.034              | 3.371           | 0.141                  | 1.830            | 1.099             | 1.099              |
|       | 400    | 1.842           | 0.303                  | 1.172            | 1.010             | 1.010              | 3.290           | 0.142                  | 1.756            | 1.071             | 1.071              |
|       | 500    | 1.797           | 0.315                  | 1.159            | 1.017             | 1.017              | 3.209           | 0.148                  | 1.734            | 1.074             | 1.074              |
|       | 600    | 1.881           | 0.292                  | 1.178            | 1.001             | 1.001              | 3.359           | 0.138                  | 1.770            | 1.065             | 1.065              |
|       | 700    | 1.912           | 0.282                  | 1.175            | 0.987             | 0.987              | 3.414           | 0.134                  | 1.784            | 1.063             | 1.063              |
|       | 800    | 1.686           | 0.345                  | 1.118            | 1.028             | 1.028              | 3.011           | 0.160                  | 1.659            | 1.070             | 1.070              |

Table A3.4: Numerical failure loads and their DSM estimates concerning the C<sub>3</sub> and R<sub>3</sub> columns with  $\sigma_{y20}$ =450*MPa*.

| I     | T (9C)           |                 |                              | Сз               |                   |                    |                 |                        | <b>R</b> 3       |                   |                    |
|-------|------------------|-----------------|------------------------------|------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | $I(\mathcal{C})$ | $\lambda_{FTT}$ | $f_{\pi\pi}/\sigma_{\pi\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uFTT}$ | $f_{uT}/f_{uFFT*}$ |
| $L_1$ | 20/100           | 1.353           | 0.489                        | 1.052            | 1.052             | 1.052              | 2.254           | 0.219                  | 1.271            | 0.983             | 0.983              |
| -1    | 200              | 1.345           | 0.491                        | 1.047            | 1.047             | 1.079              | 2.241           | 0.198                  | 1.132            | 0.879             | 0.879              |
|       | 300              | 1.336           | 0.491                        | 1.036            | 1.036             | 1.103              | 2.226           | 0.220                  | 1.242            | 0.969             | 0.969              |
|       | 400              | 1.304           | 0.497                        | 1.012            | 1.012             | 1.112              | 2.172           | 0.224                  | 1.206            | 0.955             | 0.955              |
|       | 500              | 1.272           | 0.518                        | 1.019            | 1.019             | 1.146              | 2.118           | 0.233                  | 1.194            | 0.961             | 0.961              |
|       | 600              | 1.331           | 0.478                        | 1.002            | 1.002             | 1.107              | 2.217           | 0.216                  | 1.212            | 0.948             | 0.948              |
|       | 700              | 1.353           | 0.464                        | 0.999            | 0.999             | 1.080              | 2.254           | 0.210                  | 1.218            | 0.943             | 0.943              |
|       | 800              | 1.193           | 0.567                        | 1.029            | 1.029             | 1.114              | 1.988           | 0.254                  | 1.145            | 0.959             | 0.959              |
| $L_2$ | 20/100           | 1.545           | 0.408                        | 1.110            | 1.086             | 1.086              | 2.604           | 0.193                  | 1.490            | 1.053             | 1.053              |
|       | 200              | 1.537           | 0.407                        | 1.095            | 1.076             | 1.076              | 2.589           | 0.175                  | 1.338            | 0.949             | 0.949              |
|       | 300              | 1.526           | 0.405                        | 1.074            | 1.060             | 1.060              | 2.571           | 0.192                  | 1.447            | 1.030             | 1.030              |
|       | 400              | 1.489           | 0.411                        | 1.039            | 1.039             | 1.088              | 2.509           | 0.194                  | 1.395            | 1.009             | 1.009              |
|       | 500              | 1.452           | 0.428                        | 1.035            | 1.035             | 1.106              | 2.447           | 0.201                  | 1.374            | 1.010             | 1.010              |
|       | 600              | 1.520           | 0.396                        | 1.042            | 1.032             | 1.032              | 2.561           | 0.188                  | 1.407            | 1.004             | 1.004              |
|       | 700              | 1.545           | 0.385                        | 1.048            | 1.026             | 1.026              | 2.604           | 0.183                  | 1.418            | 1.002             | 1.002              |
|       | 800              | 1.363           | 0.473                        | 1.028            | 1.028             | 1.081              | 2.296           | 0.217                  | 1.306            | 0.999             | 0.999              |
| $L_3$ | 20/100           | 1.728           | 0.351                        | 1.194            | 1.078             | 1.078              | 2.949           | 0.170                  | 1.687            | 1.102             | 1.102              |
|       | 200              | 1.718           | 0.349                        | 1.176            | 1.066             | 1.066              | 2.933           | 0.156                  | 1.526            | 1.000             | 1.000              |
|       | 300              | 1.706           | 0.347                        | 1.153            | 1.051             | 1.051              | 2.912           | 0.168                  | 1.628            | 1.072             | 1.072              |
|       | 400              | 1.665           | 0.352                        | 1.113            | 1.032             | 1.032              | 2.842           | 0.170                  | 1.568            | 1.049             | 1.049              |
|       | 500              | 1.624           | 0.366                        | 1.101            | 1.039             | 1.039              | 2.772           | 0.176                  | 1.543            | 1.048             | 1.048              |
|       | 600              | 1.700           | 0.340                        | 1.121            | 1.025             | 1.025              | 2.901           | 0.165                  | 1.586            | 1.047             | 1.047              |
|       | 700              | 1.728           | 0.332                        | 1.131            | 1.021             | 1.021              | 2.949           | 0.162                  | 1.602            | 1.046             | 1.046              |
|       | 800              | 1.524           | 0.403                        | 1.066            | 1.053             | 1.053              | 2.601           | 0.190                  | 1.467            | 1.038             | 1.038              |
| $L_4$ | 20/100           | 1.899           | 0.309                        | 1.272            | 1.073             | 1.073              | 3.288           | 0.150                  | 1.843            | 1.125             | 1.125              |
|       | 200              | 1.888           | 0.308                        | 1.253            | 1.062             | 1.062              | 3.270           | 0.137                  | 1.665            | 1.020             | 1.020              |
|       | 300              | 1.875           | 0.306                        | 1.228            | 1.046             | 1.046              | 3.247           | 0.148                  | 1.777            | 1.093             | 1.093              |
|       | 400              | 1.830           | 0.311                        | 1.186            | 1.027             | 1.027              | 3.168           | 0.150                  | 1.715            | 1.071             | 1.071              |
|       | 500              | 1.785           | 0.322                        | 1.171            | 1.033             | 1.033              | 3.090           | 0.155                  | 1.691            | 1.073             | 1.073              |
|       | 600              | 1.868           | 0.300                        | 1.194            | 1.019             | 1.019              | 3.235           | 0.145                  | 1.730            | 1.067             | 1.067              |
|       | 700              | 1.899           | 0.293                        | 1.205            | 1.017             | 1.017              | 3.288           | 0.142                  | 1.745            | 1.065             | 1.065              |
|       | 800              | 1.675           | 0.335                        | 1.073            | 0.991             | 0.991              | 2.900           | 0.172                  | 1.647            | 1.088             | 1.088              |
| $L_5$ | 20/100           | 2.059           | 0.276                        | 1.333            | 1.061             | 1.061              | 3.619           | 0.114                  | 1.708            | 0.981             | 0.981              |
|       | 200              | 2.047           | 0.275                        | 1.314            | 1.050             | 1.050              | 3.599           | 0.119                  | 1.764            | 1.017             | 1.017              |
|       | 300              | 2.033           | 0.273                        | 1.288            | 1.034             | 1.034              | 3.374<br>2.499  | 0.130                  | 1.895            | 1.097             | 1.097              |
|       | 400              | 1.984           | 0.277                        | 1.245            | 1.010             | 1.010              | 5.488<br>2.402  | 0.132                  | 1.834            | 1.078             | 1.078              |
|       | 500              | 1.935           | 0.288                        | 1.229            | 1.023             | 1.023              | 3.402           | 0.137                  | 1.813            | 1.083             | 1.083              |
|       | 000<br>700       | 2.025           | 0.207                        | 1.250            | 1.007             | 1.007              | 3.300<br>2.610  | 0.128                  | 1.847            | 1.072             | 1.072              |
|       | 700              | 2.059           | 0.201                        | 1.202            | 1.005             | 1.005              | 3.019           | 0.124                  | 1.800            | 1.008             | 1.008              |
| I     | 20/100           | 2.208           | 0.313                        | 1.165            | 1.033             | 1.033              | 3.192           | 0.130                  | 1.743            | 0.020             | 0.020              |
| $L_6$ | 20/100           | 2.208           | 0.245                        | 1.339            | 1.029             | 1.029              | 3.942           | 0.090                  | 1.707            | 1.001             | 1.001              |
|       | 200              | 2.195           | 0.244                        | 1.343            | 1.021             | 1.021              | 3.920           | 0.105                  | 1.032            | 1.001             | 1.001              |
|       | 400              | 2.100           | 0.244                        | 1.520            | 0.003             | 0.003              | 3.093           | 0.115                  | 1.204            | 1.000             | 1.000              |
|       | 500              | 2.127           | 0.240                        | 1.276            | 1 001             | 1 001              | 3 705           | 0.122                  | 1 908            | 1.075             | 1.075              |
|       | 600              | 2.075           | 0.238                        | 1.205            | 0.982             | 0.982              | 3 878           | 0.122                  | 1 935            | 1.060             | 1.060              |
|       | 700              | 2.208           | 0.230                        | 1 294            | 0.979             | 0.902              | 3 942           | 0.110                  | 1.935            | 1.004             | 1.004              |
|       | 800              | 1.947           | 0.283                        | 1.222            | 1.013             | 1.013              | 3.477           | 0.134                  | 1.845            | 1.087             | 1.087              |
|       |                  |                 |                              |                  |                   |                    |                 |                        |                  |                   |                    |

Table A3.5: Numerical failure loads and their DSM estimates concerning the C<sub>3</sub> and R<sub>3</sub> columns with  $\sigma_{y20}$ =600*MPa*.

| I     | T (9C) |                   |                        | <i>C</i> <sub>4</sub> |                   |                    |                 |                        | $R_4$            |                   |                       |
|-------|--------|-------------------|------------------------|-----------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|-----------------------|
| L     | I(C)   | λ <sub>ET T</sub> | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$      | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uEET*}$ | $\lambda_{ETT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uF} = ET*$ |
|       | 20/100 | 0.547             | 0.930                  | 1.054                 | 1.054             | 1.054              | 0.800           | 0.810                  | 1.060            | <u>1.060</u>      | 1.060                 |
| -1    | 200    | 0.544             | 0.870                  | 0.985                 | 0.985             | 1.082              | 0.796           | 0.743                  | 0.969            | 0.969             | 1.049                 |
|       | 300    | 0.540             | 0.804                  | 0.908                 | 0.908             | 1.078              | 0.790           | 0.695                  | 0.902            | 0.902             | 1.046                 |
|       | 400    | 0.527             | 0.749                  | 0.842                 | 0.842             | 1.058              | 0.771           | 0.621                  | 0.797            | 0.797             | 0.972                 |
|       | 500    | 0.514             | 0.763                  | 0.852                 | 0.852             | 1.103              | 0.752           | 0.642                  | 0.814            | 0.814             | 1.021                 |
|       | 600    | 0.538             | 0.733                  | 0.828                 | 0.828             | 1.064              | 0.787           | 0.595                  | 0.771            | 0.771             | 0.958                 |
|       | 700    | 0.547             | 0.725                  | 0.822                 | 0.822             | 1.020              | 0.800           | 0.581                  | 0.760            | 0.760             | 0.915                 |
|       | 800    | 0.482             | 0.781                  | 0.861                 | 0.861             | 1.010              | 0.706           | 0.671                  | 0.826            | 0.826             | 0.952                 |
| $L_2$ | 20/100 | 0.603             | 0.915                  | 1.065                 | 1.065             | 1.065              | 0.868           | 0.769                  | 1.054            | 1.054             | 1.054                 |
|       | 200    | 0.600             | 0.856                  | 0.995                 | 0.995             | 1.090              | 0.864           | 0.705                  | 0.964            | 0.964             | 1.039                 |
|       | 300    | 0.595             | 0.787                  | 0.913                 | 0.913             | 1.080              | 0.858           | 0.667                  | 0.907            | 0.907             | 1.043                 |
|       | 400    | 0.581             | 0.727                  | 0.837                 | 0.837             | 1.046              | 0.837           | 0.598                  | 0.802            | 0.802             | 0.969                 |
|       | 500    | 0.567             | 0.742                  | 0.849                 | 0.849             | 1.092              | 0.816           | 0.620                  | 0.820            | 0.820             | 1.017                 |
|       | 600    | 0.593             | 0.708                  | 0.820                 | 0.820             | 1.047              | 0.854           | 0.572                  | 0.776            | 0.776             | 0.954                 |
|       | 700    | 0.603             | 0.698                  | 0.813                 | 0.813             | 1.003              | 0.868           | 0.557                  | 0.764            | 0.764             | 0.910                 |
|       | 800    | 0.532             | 0.763                  | 0.859                 | 0.859             | 1.005              | 0.766           | 0.650                  | 0.831            | 0.831             | 0.953                 |
| $L_3$ | 20/100 | 0.656             | 0.898                  | 1.075                 | 1.075             | 1.075              | 0.936           | 0.726                  | 1.048            | 1.048             | 1.048                 |
|       | 200    | 0.652             | 0.841                  | 1.005                 | 1.005             | 1.098              | 0.931           | 0.664                  | 0.954            | 0.954             | 1.024                 |
|       | 300    | 0.648             | 0.773                  | 0.921                 | 0.921             | 1.084              | 0.924           | 0.638                  | 0.912            | 0.912             | 1.039                 |
|       | 400    | 0.632             | 0.707                  | 0.836                 | 0.836             | 1.039              | 0.902           | 0.574                  | 0.807            | 0.807             | 0.965                 |
|       | 500    | 0.617             | 0.725                  | 0.850                 | 0.850             | 1.087              | 0.880           | 0.598                  | 0.826            | 0.826             | 1.014                 |
|       | 600    | 0.645             | 0.686                  | 0.817                 | 0.817             | 1.036              | 0.921           | 0.548                  | 0.782            | 0.782             | 0.950                 |
|       | 700    | 0.656             | 0.675                  | 0.808                 | 0.808             | 0.991              | 0.936           | 0.534                  | 0.771            | 0.771             | 0.909                 |
|       | 800    | 0.579             | 0.749                  | 0.861                 | 0.861             | 1.004              | 0.825           | 0.629                  | 0.837            | 0.837             | 0.952                 |
| $L_4$ | 20/100 | 0.706             | 0.880                  | 1.084                 | 1.084             | 1.084              | 1.002           | 0.679                  | 1.035            | 1.035             | 1.035                 |
|       | 200    | 0.702             | 0.825                  | 1.014                 | 1.014             | 1.104              | 0.997           | 0.620                  | 0.940            | 0.940             | 1.002                 |
|       | 300    | 0.697             | 0.757                  | 0.928                 | 0.928             | 1.086              | 0.990           | 0.607                  | 0.915            | 0.915             | 1.033                 |
|       | 400    | 0.681             | 0.689                  | 0.837                 | 0.837             | 1.034              | 0.966           | 0.552                  | 0.816            | 0.816             | 0.964                 |
|       | 500    | 0.664             | 0.709                  | 0.852                 | 0.852             | 1.083              | 0.942           | 0.574                  | 0.832            | 0.832             | 1.009                 |
|       | 600    | 0.695             | 0.666                  | 0.815                 | 0.815             | 1.028              | 0.986           | 0.526                  | 0.790            | 0.790             | 0.947                 |
|       | 700    | 0.706             | 0.652                  | 0.804                 | 0.804             | 0.980              | 1.002           | 0.512                  | 0.780            | 0.780             | 0.908                 |
|       | 800    | 0.623             | 0.735                  | 0.864                 | 0.864             | 1.003              | 0.884           | 0.605                  | 0.839            | 0.839             | 0.948                 |
| $L_5$ | 20/100 | 0.754             | 0.859                  | 1.090                 | 1.090             | 1.090              | 1.068           | 0.633                  | 1.020            | 1.020             | 1.020                 |
|       | 200    | 0.750             | 0.807                  | 1.022                 | 1.022             | 1.110              | 1.062           | 0.576                  | 0.924            | 0.924             | 0.980                 |
|       | 300    | 0.744             | 0.742                  | 0.935                 | 0.935             | 1.090              | 1.055           | 0.575                  | 0.915            | 0.915             | 1.024                 |
|       | 400    | 0.726             | 0.674                  | 0.840                 | 0.840             | 1.032              | 1.029           | 0.528                  | 0.823            | 0.823             | 0.961                 |
|       | 500    | 0.708             | 0.694                  | 0.856                 | 0.856             | 1.081              | 1.004           | 0.550                  | 0.838            | 0.838             | 1.004                 |
|       | 600    | 0.741             | 0.648                  | 0.815                 | 0.815             | 1.021              | 1.051           | 0.503                  | 0.798            | 0.798             | 0.944                 |
|       | 700    | 0.754             | 0.635                  | 0.806                 | 0.806             | 0.976              | 1.068           | 0.488                  | 0.787            | 0.787             | 0.905                 |
|       | 800    | 0.665             | 0.722                  | 0.869                 | 0.869             | 1.005              | 0.942           | 0.584                  | 0.847            | 0.847             | 0.951                 |
| $L_6$ | 20/100 | 0.798             | 0.837                  | 1.092                 | 1.092             | 1.092              | 1.133           | 0.588                  | 1.007            | 1.007             | 1.007                 |
|       | 200    | 0.794             | 0.789                  | 1.027                 | 1.027             | 1.113              | 1.127           | 0.535                  | 0.911            | 0.911             | 0.960                 |
|       | 300    | 0.788             | 0.726                  | 0.942                 | 0.942             | 1.092              | 1.119           | 0.542                  | 0.915            | 0.915             | 1.013                 |
|       | 400    | 0.769             | 0.659                  | 0.845                 | 0.845             | 1.031              | 1.092           | 0.504                  | 0.829            | 0.829             | 0.956                 |
|       | 500    | 0.750             | 0.681                  | 0.861                 | 0.861             | 1.081              | 1.065           | 0.525                  | 0.843            | 0.843             | 0.997                 |
|       | 500    | 0.785             | 0.632                  | 0.818                 | 0.818             | 1.018              | 1.114           | 0.479                  | 0.806            | 0.806             | 0.939                 |
|       | /00    | 0.798             | 0.619                  | 0.808                 | 0.808             | 0.973              | 1.155           | 0.466                  | 0.797            | 0.797             | 0.906                 |
|       | 800    | 0.704             | 0.710                  | 0.8/4                 | 0.8/4             | 1.007              | 0.999           | 0.300                  | 0.831            | 0.831             | 0.948                 |

Table A4.1: Numerical failure loads and their DSM estimates concerning the C<sub>4</sub> and R<sub>4</sub> columns with  $\sigma_{y20}$ =75*MPa*.

|       | T (9C)          |                 |                      | <i>C</i> <sub>4</sub> |                   |                    |                 |                      | $R_4$            |                   |                   |
|-------|-----------------|-----------------|----------------------|-----------------------|-------------------|--------------------|-----------------|----------------------|------------------|-------------------|-------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{uT}$ | $f_{uT}/f_{vGT}$      | $f_{uT}/f_{vETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{uT}/f_{nGT}$ | $f_{uT}/f_{uFTT}$ | $f_{uT}/f_{vFFT}$ |
| $L_1$ | 20/100          | 0.773           | 0.873                | 1.121                 | 1.121             | 1.121              | 1.132           | 0.617                | 1.054            | 1.054             | 1.054             |
| 1     | 200             | 0.769           | 0.756                | 0.969                 | 0.969             | 1.051              | 1.126           | 0.561                | 0.953            | 0.953             | 1.005             |
|       | 300             | 0.764           | 0.757                | 0.967                 | 0.967             | 1.124              | 1.118           | 0.574                | 0.968            | 0.968             | 1.072             |
|       | 400             | 0.745           | 0.701                | 0.885                 | 0.885             | 1.083              | 1.091           | 0.538                | 0.885            | 0.885             | 1.021             |
|       | 500             | 0.727           | 0.718                | 0.896                 | 0.896             | 1.128              | 1.064           | 0.561                | 0.901            | 0.901             | 1.065             |
|       | 600             | 0.761           | 0.682                | 0.869                 | 0.869             | 1.085              | 1.113           | 0.514                | 0.864            | 0.864             | 1.008             |
|       | 700             | 0.773           | 0.672                | 0.863                 | 0.863             | 1.043              | 1.132           | 0.501                | 0.856            | 0.856             | 0.973             |
|       | 800             | 0.682           | 0.742                | 0.902                 | 0.902             | 1.042              | 0.998           | 0.597                | 0.906            | 0.906             | 1.009             |
| $L_2$ | 20/100          | 0.853           | 0.832                | 1.127                 | 1.127             | 1.127              | 1.228           | 0.550                | 1.035            | 1.035             | 1.035             |
|       | 200             | 0.848           | 0.755                | 1.019                 | 1.019             | 1.100              | 1.221           | 0.499                | 0.931            | 0.931             | 0.972             |
|       | 300             | 0.842           | 0.728                | 0.979                 | 0.979             | 1.128              | 1.213           | 0.522                | 0.966            | 0.966             | 1.052             |
|       | 400             | 0.822           | 0.670                | 0.889                 | 0.889             | 1.077              | 1.184           | 0.498                | 0.895            | 0.895             | 1.013             |
|       | 500             | 0.801           | 0.689                | 0.902                 | 0.902             | 1.122              | 1.154           | 0.519                | 0.907            | 0.907             | 1.050             |
|       | 600             | 0.839           | 0.649                | 0.871                 | 0.871             | 1.073              | 1.208           | 0.476                | 0.876            | 0.876             | 0.999             |
|       | 700             | 0.853           | 0.637                | 0.863                 | 0.863             | 1.031              | 1.228           | 0.463                | 0.870            | 0.870             | 0.968             |
|       | 800             | 0.752           | 0.717                | 0.909                 | 0.909             | 1.043              | 1.083           | 0.558                | 0.912            | 0.912             | 1.005             |
| $L_3$ | 20/100          | 0.928           | 0.784                | 1.124                 | 1.124             | 1.124              | 1.324           | 0.491                | 1.022            | 1.022             | 1.022             |
|       | 200             | 0.923           | 0.720                | 1.028                 | 1.028             | 1.103              | 1.316           | 0.446                | 0.920            | 0.920             | 0.951             |
|       | 300             | 0.916           | 0.697                | 0.991                 | 0.991             | 1.130              | 1.307           | 0.472                | 0.965            | 0.965             | 1.033             |
|       | 400             | 0.894           | 0.643                | 0.898                 | 0.898             | 1.075              | 1.275           | 0.457                | 0.904            | 0.904             | 1.001             |
|       | 500             | 0.872           | 0.663                | 0.912                 | 0.912             | 1.120              | 1.244           | 0.478                | 0.913            | 0.913             | 1.034             |
|       | 600             | 0.913           | 0.619                | 0.877                 | 0.877             | 1.067              | 1.302           | 0.437                | 0.889            | 0.889             | 0.990             |
|       | 700             | 0.928           | 0.606                | 0.869                 | 0.869             | 1.026              | 1.324           | 0.427                | 0.890            | 0.890             | 0.969             |
|       | 800             | 0.818           | 0.694                | 0.919                 | 0.919             | 1.047              | 1.167           | 0.518                | 0.916            | 0.916             | 0.996             |
| $L_4$ | 20/100          | 0.999           | 0.732                | 1.112                 | 1.112             | 1.112              | 1.418           | 0.442                | 1.025            | 1.025             | 1.025             |
|       | 200             | 0.993           | 0.681                | 1.030                 | 1.030             | 1.098              | 1.410           | 0.401                | 0.921            | 0.921             | 0.942             |
|       | 300             | 0.986           | 0.662                | 0.995                 | 0.995             | 1.124              | 1.400           | 0.428                | 0.971            | 0.971             | 1.020             |
|       | 400             | 0.963           | 0.615                | 0.906                 | 0.906             | 1.071              | 1.366           | 0.419                | 0.916            | 0.916             | 0.991             |
|       | 500             | 0.939           | 0.636                | 0.920                 | 0.920             | 1.116              | 1.332           | 0.438                | 0.922            | 0.922             | 1.019             |
|       | 600             | 0.983           | 0.590                | 0.884                 | 0.884             | 1.060              | 1.395           | 0.401                | 0.905            | 0.905             | 0.982             |
|       | 700             | 0.999           | 0.576                | 0.874                 | 0.874             | 1.019              | 1.418           | 0.389                | 0.902            | 0.902             | 0.960             |
|       | 800             | 0.881           | 0.670                | 0.927                 | 0.927             | 1.048              | 1.250           | 0.478                | 0.920            | 0.920             | 0.987             |
| $L_5$ | 20/100          | 1.066           | 0.681                | 1.096                 | 1.096             | 1.096              | 1.511           | 0.401                | 1.042            | 1.037             | 1.037             |
|       | 200             | 1.060           | 0.642                | 1.027                 | 1.027             | 1.090              | 1.502           | 0.363                | 0.935            | 0.933             | 0.933             |
|       | 300             | 1.053           | 0.627                | 0.997                 | 0.997             | 1.115              | 1.492           | 0.389                | 0.987            | 0.987             | 1.017             |
|       | 400             | 1.027           | 0.587                | 0.914                 | 0.914             | 1.067              | 1.456           | 0.385                | 0.935            | 0.935             | 0.988             |
|       | 500             | 1.002           | 0.609                | 0.927                 | 0.927             | 1.111              | 1.420           | 0.402                | 0.935            | 0.935             | 1.008             |
|       | 600             | 1.049           | 0.563                | 0.892                 | 0.892             | 1.056              | 1.486           | 0.368                | 0.927            | 0.927             | 0.979             |
|       | 700             | 1.066           | 0.544                | 0.875                 | 0.8/5             | 1.007              | 1.511           | 0.357                | 0.928            | 0.924             | 0.924             |
|       | 800             | 0.940           | 0.646                | 0.935                 | 0.935             | 1.050              | 1.332           | 0.440                | 0.924            | 0.924             | 0.977             |
| $L_6$ | 20/100          | 1.129           | 0.635                | 1.082                 | 1.082             | 1.082              | 1.602           | 0.366                | 1.072            | 1.031             | 1.031             |
|       | 200             | 1.123           | 0.604                | 1.023                 | 1.023             | 1.079              | 1.593           | 0.332                | 0.962            | 0.929             | 0.929             |
|       | 300             | 1.115           | 0.593                | 0.997                 | 0.997             | 1.104              | 1.582           | 0.356                | 1.015            | 0.984             | 0.984             |
|       | 400             | 1.088           | 0.501                | 0.920                 | 0.920             | 1.062              | 1.544           | 0.333                | 0.900            | 0.944             | 0.944             |
|       | 500             | 1.001           | 0.585                | 0.933                 | 0.933             | 1.104              | 1.300           | 0.309                | 0.935            | 0.952             | 0.952             |
|       | 700             | 1.111           | 0.537                | 0.900                 | 0.900             | 1.030              | 1.370           | 0.339                | 0.939            | 0.931             | 0.931             |
|       | 800             | 0.006           | 0.525                | 0.092                 | 0.092             | 1.014              | 1.002           | 0.328                | 0.900            | 0.923             | 0.923             |
|       | 000             | 0.770           | 0.044                | 0.741                 | 0.741             | 1.047              | 1.715           | 0.407                | 0.750            | 0.750             | 0.711             |

Table A4.2: Numerical failure loads and their DSM estimates concerning the C<sub>4</sub> and R<sub>4</sub> columns with  $\sigma_{y20}$ =150*MPa*.

| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | T (9C)     |                 |                      | <i>C</i> <sub>4</sub>   |                   |                    |                 |                      | <b>R</b> 4              |                           |                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------------|-----------------|----------------------|-------------------------|-------------------|--------------------|-----------------|----------------------|-------------------------|---------------------------|----------------------|
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L     | I(C)       | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\nu T}/f_{\nu C T}$ | $f_{uT}/f_{vETT}$ | $f_{uT}/f_{vEET*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{uT}$ | $f_{\mu T}/f_{\mu G T}$ | $f_{\mu\tau}/f_{\mu FTT}$ | $f_{uT}/f_{vE} ET^*$ |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $L_1$ | 20/100     | 1.094           | 0.680                | 1.122                   | <u>1.122</u>      | 1.122              | 1.601           | 0.365                | 1.065                   | 1.025                     | 1.025                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -1    | 200        | 1.088           | 0.665                | 1.091                   | 1.091             | 1.155              | 1.592           | 0.330                | 0.954                   | 0.921                     | 0.921                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 300        | 1.080           | 0.638                | 1.039                   | 1.039             | 1.157              | 1.581           | 0.361                | 1.029                   | 0.998                     | 0.998                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 400        | 1.054           | 0.606                | 0.965                   | 0.965             | 1.121              | 1.543           | 0.366                | 0.992                   | 0.976                     | 0.976                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 500        | 1.028           | 0.627                | 0.976                   | 0.976             | 1.163              | 1.504           | 0.383                | 0.988                   | 0.986                     | 0.986                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 600        | 1.076           | 0.584                | 0.948                   | 0.948             | 1.115              | 1.575           | 0.350                | 0.990                   | 0.962                     | 0.962                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 700        | 1.094           | 0.570                | 0.941                   | 0.941             | 1.077              | 1.601           | 0.340                | 0.993                   | 0.955                     | 0.955                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 800        | 0.965           | 0.664                | 0.980                   | 0.980             | 1.097              | 1.412           | 0.423                | 0.974                   | 0.974                     | 1.015                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $L_2$ | 20/100     | 1.206           | 0.595                | 1.093                   | 1.093             | 1.093              | 1.737           | 0.323                | 1.110                   | 1.019                     | 1.019                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 200        | 1.199           | 0.587                | 1.071                   | 1.071             | 1.121              | 1.727           | 0.293                | 0.998                   | 0.919                     | 0.919                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 300        | 1.191           | 0.570                | 1.032                   | 1.032             | 1.129              | 1.715           | 0.319                | 1.069                   | 0.988                     | 0.988                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 400        | 1.162           | 0.552                | 0.972                   | 0.972             | 1.104              | 1.674           | 0.322                | 1.029                   | 0.965                     | 0.965                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 500        | 1.133           | 0.574                | 0.982                   | 0.982             | 1.143              | 1.633           | 0.337                | 1.023                   | 0.974                     | 0.974                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 600        | 1.186           | 0.531                | 0.956                   | 0.956             | 1.096              | 1.709           | 0.309                | 1.028                   | 0.953                     | 0.953                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 700        | 1.206           | 0.517                | 0.950                   | 0.950             | 1.062              | 1.737           | 0.300                | 1.031                   | 0.947                     | 0.947                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 800        | 1.063           | 0.615                | 0.988                   | 0.988             | 1.091              | 1.532           | 0.374                | 1.000                   | 0.988                     | 0.988                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $L_3$ | 20/100     | 1.312           | 0.525                | 1.080                   | 1.080             | 1.080              | 1.872           | 0.290                | 1.159                   | 1.019                     | 1.019                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 200        | 1.305           | 0.520                | 1.060                   | 1.060             | 1.098              | 1.861           | 0.265                | 1.045                   | 0.921                     | 0.921                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 300        | 1.296           | 0.509                | 1.029                   | 1.029             | 1.103              | 1.848           | 0.285                | 1.110                   | 0.983                     | 0.983                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 400        | 1.264           | 0.501                | 0.978                   | 0.978             | 1.086              | 1.804           | 0.287                | 1.066                   | 0.957                     | 0.957                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 500        | 1.233           | 0.522                | 0.986                   | 0.986             | 1.120              | 1.759           | 0.300                | 1.060                   | 0.966                     | 0.966                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 600        | 1.291           | 0.481                | 0.966                   | 0.966             | 1.078              | 1.841           | 0.276                | 1.067                   | 0.947                     | 0.947                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 700        | 1.312           | 0.467                | 0.961                   | 0.961             | 1.049              | 1.872           | 0.268                | 1.071                   | 0.941                     | 0.941                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 800        | 1.157           | 0.565                | 0.990                   | 0.990             | 1.079              | 1.651           | 0.333                | 1.034                   | 0.978                     | 0.978                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $L_4$ | 20/100     | 1.413           | 0.471                | 1.087                   | 1.087             | 1.087              | 2.005           | 0.264                | 1.212                   | 1.023                     | 1.023                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 200        | 1.405           | 0.467                | 1.066                   | 1.066             | 1.091              | 1.994           | 0.242                | 1.097                   | 0.929                     | 0.929                |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 300        | 1.395           | 0.459                | 1.036                   | 1.036             | 1.089              | 1.980           | 0.259                | 1.156                   | 0.984                     | 0.984                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 400        | 1.361           | 0.455                | 0.989                   | 0.989             | 1.071              | 1.932           | 0.260                | 1.106                   | 0.955                     | 0.955                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 500        | 1.328           | 0.475                | 0.993                   | 0.993             | 1.099              | 1.884           | 0.271                | 1.099                   | 0.962                     | 0.962                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 600        | 1.390           | 0.437                | 0.981                   | 0.981             | 1.065              | 1.972           | 0.250                | 1.109                   | 0.946                     | 0.946                |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       | 700        | 1.413           | 0.424                | 0.978                   | 0.978             | 1.041              | 2.005           | 0.243                | 1.115                   | 0.942                     | 0.942                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 800        | 1.246           | 0.519                | 0.993                   | 0.993             | 1.066              | 1.768           | 0.300                | 1.069                   | 0.971                     | 0.971                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $L_5$ | 20/100     | 1.508           | 0.429                | 1.113                   | 1.107             | 1.107              | 2.136           | 0.244                | 1.268                   | 1.032                     | 1.032                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 200        | 1.499           | 0.425                | 1.088                   | 1.088             | 1.101              | 2.124           | 0.224                | 1.151                   | 0.940                     | 0.940                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 300        | 1.489           | 0.418                | 1.057                   | 1.057             | 1.089              | 2.109           | 0.238                | 1.207                   | 0.990                     | 0.990                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 400        | 1.455           | 0.416                | 1.007                   | 1.007             | 1.065              | 2.059           | 0.238                | 1.151                   | 0.957                     | 0.957                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 500        | 1.41/           | 0.434                | 1.006                   | 1.006             | 1.086              | 2.008           | 0.248                | 1.141                   | 0.962                     | 0.962                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 700        | 1.485           | 0.400                | 1.004                   | 1.004             | 1.001              | 2.102           | 0.229                | 1.155                   | 0.949                     | 0.949                |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       | 700        | 1.508           | 0.384                | 0.995                   | 0.989             | 0.989              | 2.130           | 0.223                | 1.102                   | 0.940                     | 0.940                |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       | 20/100     | 1.529           | 0.470                | 0.998                   | 0.998             | 1.030              | 1.004           | 0.275                | 1.100                   | 0.908                     | 0.908                |
| 200       1.388       0.392       1.120       1.008       1.008       2.233       0.208       1.205       0.949       0.949         300       1.577       0.385       1.092       1.043       1.043       2.237       0.221       1.259       0.997       0.997         400       1.539       0.384       1.037       1.013       1.013       2.183       0.220       1.197       0.962       0.962         500       1.501       0.401       1.029       1.028       1.028       2.130       0.229       1.186       0.967       0.967         600       1.571       0.370       1.040       0.996       0.996       2.229       0.212       1.202       0.955       0.955         700       1.597       0.360       1.046       0.987       0.987       2.266       0.207       1.210       0.952       0.952         800       1.408       0.439       1.007       1.050       1.998       0.251       1.145       0.968       0.968 | $L_6$ | 20/100     | 1.597           | 0.390                | 1.152                   | 1.08/             | 1.087              | 2.200           | 0.220                | 1.325                   | 1.042                     | 1.042                |
| 300       1.377       0.383       1.092       1.043       1.043       2.237       0.221       1.239       0.997       0.997         400       1.539       0.384       1.037       1.013       1.013       2.183       0.220       1.197       0.962       0.962         500       1.501       0.401       1.029       1.028       1.028       2.130       0.229       1.186       0.967       0.967         600       1.571       0.370       1.040       0.996       0.996       2.229       0.212       1.202       0.955       0.955         700       1.597       0.360       1.046       0.987       0.987       2.266       0.207       1.210       0.952       0.952         800       1.408       0.439       1.007       1.050       1.998       0.251       1.145       0.968       0.968                                                                                                                                     |       | 200        | 1.300           | 0.392                | 1.120                   | 1.008             | 1.008              | 2.235           | 0.208                | 1.205                   | 0.949                     | 0.949                |
| 400       1.037       1.037       1.013       1.013       2.163       0.220       1.197       0.902       0.902         500       1.501       0.401       1.029       1.028       1.028       2.130       0.229       1.186       0.967       0.967         600       1.571       0.370       1.040       0.996       0.996       2.229       0.212       1.202       0.955       0.955         700       1.597       0.360       1.046       0.987       0.987       2.266       0.207       1.210       0.952       0.952         800       1.408       0.439       1.007       1.050       1.998       0.251       1.145       0.968       0.968                                                                                                                                                                                                                                                                                     |       | 300<br>400 | 1.577           | 0.303                | 1.092                   | 1.045             | 1.045              | 2.237           | 0.221                | 1.239                   | 0.997                     | 0.997                |
| 600         1.571         0.370         1.040         0.996         0.996         2.150         0.225         1.160         0.907         0.907           600         1.571         0.370         1.040         0.996         0.996         2.229         0.212         1.202         0.955         0.955           700         1.597         0.360         1.046         0.987         0.987         2.266         0.207         1.210         0.952         0.952           800         1.408         0.439         1.007         1.050         1.998         0.251         1.145         0.968         0.968                                                                                                                                                                                                                                                                                                                         |       | 500        | 1.559           | 0.304                | 1.037                   | 1.015             | 1.015              | 2.105           | 0.220                | 1.177                   | 0.902                     | 0.962                |
| 700         1.597         0.360         1.046         0.987         0.987         2.266         0.212         1.202         0.955         0.955           800         1.408         0.439         1.007         1.050         1.998         0.251         1.145         0.968         0.955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       | 600        | 1.501           | 0.401                | 1.029                   | 0.996             | 0.996              | 2.130           | 0.229                | 1 202                   | 0.955                     | 0.955                |
| 800 1.408 0.439 1.007 1.007 1.050 1.998 0.251 1.145 0.968 0.968                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 700        | 1 597           | 0.360                | 1.046                   | 0.987             | 0.987              | 2,266           | 0.212                | 1.202                   | 0.952                     | 0.952                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 800        | 1.408           | 0.439                | 1.007                   | 1.007             | 1.050              | 1.998           | 0.251                | 1.145                   | 0.968                     | 0.968                |

Table A4.3: Numerical failure loads and their DSM estimates concerning the C<sub>4</sub> and R<sub>4</sub> columns with  $\sigma_{y20}$ =300*MPa*.

| -       | T (9C)          |                 |                      | <i>C</i> <sub>4</sub> |                   |                      |                 |                      | <b>R</b> 4 |                   |                    |
|---------|-----------------|-----------------|----------------------|-----------------------|-------------------|----------------------|-----------------|----------------------|------------|-------------------|--------------------|
| L       | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | fut/fnGT              | $f_{uT}/f_{nETT}$ | $f_{uT}/f_{vE} ET^*$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | fut/fnGT   | $f_{uT}/f_{nFTT}$ | $f_{uT}/f_{vEET*}$ |
| $L_1$   | 20/100          | 1.340           | 0.511                | 1.082                 | 1.082             | 1.082                | 1.961           | 0.265                | 1.162      | 0.994             | 0.994              |
| 1       | 200             | 1.332           | 0.507                | 1.066                 | 1.066             | 1.100                | 1.950           | 0.243                | 1.053      | 0.903             | 0.903              |
|         | 300             | 1.323           | 0.501                | 1.042                 | 1.042             | 1.112                | 1.936           | 0.262                | 1.120      | 0.965             | 0.965              |
|         | 400             | 1.291           | 0.499                | 1.003                 | 1.003             | 1.106                | 1.889           | 0.266                | 1.082      | 0.946             | 0.946              |
|         | 500             | 1.259           | 0.520                | 1.010                 | 1.010             | 1.139                | 1.843           | 0.278                | 1.076      | 0.954             | 0.954              |
|         | 600             | 1.318           | 0.480                | 0.993                 | 0.993             | 1.101                | 1.929           | 0.256                | 1.086      | 0.938             | 0.938              |
|         | 700             | 1.340           | 0.467                | 0.990                 | 0.990             | 1.074                | 1.961           | 0.249                | 1.092      | 0.934             | 0.934              |
|         | 800             | 1.182           | 0.566                | 1.016                 | 1.016             | 1.102                | 1.729           | 0.309                | 1.054      | 0.970             | 0.970              |
| $L_2$   | 20/100          | 1.477           | 0.443                | 1.103                 | 1.103             | 1.103                | 2.127           | 0.240                | 1.238      | 1.010             | 1.010              |
|         | 200             | 1.469           | 0.440                | 1.085                 | 1.085             | 1.102                | 2.116           | 0.220                | 1.125      | 0.921             | 0.921              |
|         | 300             | 1.458           | 0.435                | 1.059                 | 1.059             | 1.099                | 2.101           | 0.236                | 1.189      | 0.977             | 0.977              |
|         | 400             | 1.423           | 0.436                | 1.019                 | 1.019             | 1.086                | 2.050           | 0.239                | 1.144      | 0.953             | 0.953              |
|         | 500             | 1.388           | 0.455                | 1.019                 | 1.019             | 1.110                | 1.999           | 0.248                | 1.132      | 0.958             | 0.958              |
|         | 600             | 1.453           | 0.420                | 1.016                 | 1.016             | 1.084                | 2.093           | 0.230                | 1.150      | 0.947             | 0.947              |
|         | 700             | 1.477           | 0.409                | 1.018                 | 1.018             | 1.066                | 2.127           | 0.224                | 1.158      | 0.945             | 0.945              |
|         | 800             | 1.302           | 0.500                | 1.016                 | 1.016             | 1.080                | 1.876           | 0.274                | 1.100      | 0.965             | 0.965              |
| $L_{3}$ | 20/100          | 1.607           | 0.394                | 1.160                 | 1.088             | 1.088                | 2.292           | 0.220                | 1.316      | 1.028             | 1.028              |
|         | 200             | 1.598           | 0.391                | 1.138                 | 1.072             | 1.072                | 2.280           | 0.202                | 1.196      | 0.937             | 0.937              |
|         | 300             | 1.587           | 0.386                | 1.109                 | 1.052             | 1.052                | 2.264           | 0.216                | 1.260      | 0.992             | 0.992              |
|         | 400             | 1.549           | 0.388                | 1.060                 | 1.029             | 1.029                | 2.209           | 0.217                | 1.208      | 0.964             | 0.964              |
|         | 500             | 1.510           | 0.404                | 1.050                 | 1.043             | 1.043                | 2.155           | 0.226                | 1.195      | 0.968             | 0.968              |
|         | 600             | 1.581           | 0.374                | 1.067                 | 1.015             | 1.015                | 2.255           | 0.210                | 1.216      | 0.959             | 0.959              |
|         | 700             | 1.607           | 0.365                | 1.076                 | 1.009             | 1.009                | 2.292           | 0.205                | 1.226      | 0.958             | 0.958              |
|         | 800             | 1.417           | 0.443                | 1.028                 | 1.028             | 1.070                | 2.022           | 0.247                | 1.153      | 0.969             | 0.969              |
| $L_4$   | 20/100          | 1.730           | 0.358                | 1.223                 | 1.071             | 1.071                | 2.456           | 0.202                | 1.391      | 1.044             | 1.044              |
|         | 200             | 1.721           | 0.355                | 1.199                 | 1.056             | 1.056                | 2.442           | 0.186                | 1.264      | 0.952             | 0.952              |
|         | 300             | 1.708           | 0.351                | 1.168                 | 1.035             | 1.035                | 2.425           | 0.198                | 1.330      | 1.006             | 1.006              |
|         | 400             | 1.667           | 0.352                | 1.116                 | 1.012             | 1.012                | 2.366           | 0.199                | 1.274      | 0.977             | 0.977              |
|         | 500             | 1.626           | 0.365                | 1.101                 | 1.021             | 1.021                | 2.308           | 0.207                | 1.258      | 0.979             | 0.979              |
|         | 600<br>700      | 1.702           | 0.341                | 1.12/                 | 1.002             | 1.002                | 2.410           | 0.193                | 1.283      | 0.973             | 0.973              |
|         | 200             | 1.750           | 0.333                | 1.150                 | 0.990             | 0.990                | 2.430           | 0.100                | 1.295      | 0.972             | 0.972              |
| I       | 20/100          | 1.320           | 0.399                | 1.000                 | 1.043             | 1.045                | 2.100           | 0.220                | 1.210      | 1.057             | 1.057              |
| $L_5$   | 20/100          | 1.040           | 0.331                | 1.207                 | 1.002             | 1.002                | 2.010           | 0.167                | 1.401      | 0.062             | 0.062              |
|         | 200             | 1.823           | 0.320                | 1.202                 | 1.040             | 1.040                | 2.002           | 0.172                | 1.320      | 1.018             | 1.018              |
|         | 400             | 1.025           | 0.324                | 1.22)                 | 1.020             | 1.020                | 2.504           | 0.104                | 1.338      | 0.989             | 0.989              |
|         | 500             | 1 735           | 0.325                | 1 1 5 5               | 1.002             | 1.002                | 2.321           | 0.191                | 1.320      | 0.990             | 0.990              |
|         | 600             | 1.755           | 0.336                | 1.133                 | 0.994             | 0.994                | 2.574           | 0.171                | 1.320      | 0.995             | 0.995              |
|         | 700             | 1.846           | 0.309                | 1.199                 | 0.989             | 0.989                | 2.616           | 0.164                | 1.277      | 0.924             | 0.924              |
|         | 800             | 1.628           | 0.365                | 1.105                 | 1.023             | 1.023                | 2.308           | 0.209                | 1.268      | 0.987             | 0.987              |
| Le      | 20/100          | 1.955           | 0.309                | 1.347                 | 1.053             | 1.053                | 2.775           | 0.155                | 1.363      | 0.953             | 0.953              |
| -0      | 200             | 1.945           | 0.306                | 1.320                 | 1.038             | 1.038                | 2.760           | 0.159                | 1.381      | 0.969             | 0.969              |
|         | 300             | 1.931           | 0.303                | 1.287                 | 1.018             | 1.018                | 2.740           | 0.170                | 1.459      | 1.028             | 1.028              |
|         | 400             | 1.884           | 0.304                | 1.229                 | 0.995             | 0.995                | 2.674           | 0.172                | 1.398      | 0.999             | 0.999              |
|         | 500             | 1.838           | 0.314                | 1.208                 | 1.000             | 1.000                | 2.608           | 0.178                | 1.380      | 1.001             | 1.001              |
|         | 600             | 1.924           | 0.295                | 1.244                 | 0.987             | 0.987                | 2.730           | 0.166                | 1.409      | 0.995             | 0.995              |
|         | 700             | 1.955           | 0.288                | 1.257                 | 0.983             | 0.983                | 2.775           | 0.162                | 1.421      | 0.994             | 0.994              |
|         | 800             | 1.725           | 0.339                | 1.150                 | 1.010             | 1.010                | 2.447           | 0.194                | 1.324      | 0.996             | 0.996              |

Table A4.4: Numerical failure loads and their DSM estimates concerning the C<sub>4</sub> and R<sub>4</sub> columns with  $\sigma_{y20}$ =450*MPa*.

|       | T (0C)          |                 |                      | <i>C</i> <sub>4</sub>   |                   |                    |                 |                      | <b>R</b> 4              |                   |                      |
|-------|-----------------|-----------------|----------------------|-------------------------|-------------------|--------------------|-----------------|----------------------|-------------------------|-------------------|----------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{uT}$ | $f_{\nu T}/f_{\nu C T}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vEET*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu T}/f_{\mu G T}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vE} ET^*$ |
| $L_1$ | 20/100          | 1.547           | 0.411                | 1.121                   | 1.089             | 1.089              | 2.264           | 0.216                | 1.264                   | 0.995             | 0.995                |
| 1     | 200             | 1.538           | 0.408                | 1.102                   | 1.076             | 1.076              | 2.251           | 0.197                | 1.136                   | 0.897             | 0.897                |
|       | 300             | 1.528           | 0.406                | 1.080                   | 1.061             | 1.061              | 2.235           | 0.215                | 1.225                   | 0.971             | 0.971                |
|       | 400             | 1.491           | 0.411                | 1.042                   | 1.042             | 1.091              | 2.181           | 0.218                | 1.182                   | 0.951             | 0.951                |
|       | 500             | 1.454           | 0.428                | 1.038                   | 1.038             | 1.108              | 2.128           | 0.226                | 1.168                   | 0.953             | 0.953                |
|       | 600             | 1.522           | 0.396                | 1.047                   | 1.032             | 1.032              | 2.227           | 0.211                | 1.192                   | 0.947             | 0.947                |
|       | 700             | 1.547           | 0.387                | 1.055                   | 1.024             | 1.024              | 2.264           | 0.206                | 1.201                   | 0.945             | 0.945                |
|       | 800             | 1.364           | 0.472                | 1.028                   | 1.028             | 1.081              | 1.996           | 0.248                | 1.127                   | 0.954             | 0.954                |
| $L_2$ | 20/100          | 1.705           | 0.363                | 1.204                   | 1.069             | 1.069              | 2.456           | 0.198                | 1.362                   | 1.022             | 1.022                |
|       | 200             | 1.696           | 0.361                | 1.184                   | 1.057             | 1.057              | 2.443           | 0.181                | 1.229                   | 0.926             | 0.926                |
|       | 300             | 1.684           | 0.358                | 1.158                   | 1.040             | 1.040              | 2.426           | 0.196                | 1.312                   | 0.992             | 0.992                |
|       | 400             | 1.643           | 0.362                | 1.114                   | 1.023             | 1.023              | 2.367           | 0.198                | 1.264                   | 0.970             | 0.970                |
|       | 500             | 1.603           | 0.375                | 1.098                   | 1.032             | 1.032              | 2.309           | 0.205                | 1.248                   | 0.971             | 0.971                |
|       | 600             | 1.678           | 0.351                | 1.127                   | 1.015             | 1.015              | 2.417           | 0.192                | 1.276                   | 0.967             | 0.967                |
|       | 700             | 1.705           | 0.344                | 1.140                   | 1.011             | 1.011              | 2.456           | 0.187                | 1.288                   | 0.967             | 0.967                |
|       | 800             | 1.504           | 0.410                | 1.057                   | 1.054             | 1.054              | 2.166           | 0.224                | 1.200                   | 0.969             | 0.969                |
| $L_3$ | 20/100          | 1.856           | 0.329                | 1.293                   | 1.061             | 1.061              | 2.647           | 0.171                | 1.366                   | 0.982             | 0.982                |
|       | 200             | 1.845           | 0.327                | 1.270                   | 1.048             | 1.048              | 2.632           | 0.166                | 1.314                   | 0.947             | 0.947                |
|       | 300             | 1.832           | 0.325                | 1.243                   | 1.033             | 1.033              | 2.614           | 0.179                | 1.395                   | 1.010             | 1.010                |
|       | 400             | 1.788           | 0.328                | 1.195                   | 1.015             | 1.015              | 2.551           | 0.181                | 1.345                   | 0.987             | 0.987                |
|       | 500             | 1.744           | 0.338                | 1.173                   | 1.020             | 1.020              | 2.488           | 0.188                | 1.326                   | 0.988             | 0.988                |
|       | 600             | 1.826           | 0.319                | 1.211                   | 1.009             | 1.009              | 2.604           | 0.175                | 1.357                   | 0.984             | 0.984                |
|       | 700             | 1.856           | 0.312                | 1.227                   | 1.007             | 1.007              | 2.647           | 0.174                | 1.390                   | 0.999             | 0.999                |
|       | 800             | 1.637           | 0.365                | 1.116                   | 1.029             | 1.029              | 2.335           | 0.205                | 1.272                   | 0.984             | 0.984                |
| $L_4$ | 20/100          | 1.998           | 0.303                | 1.380                   | 1.058             | 1.058              | 2.835           | 0.155                | 1.421                   | 0.981             | 0.981                |
|       | 200             | 1.987           | 0.301                | 1.356                   | 1.045             | 1.045              | 2.820           | 0.152                | 1.381                   | 0.957             | 0.957                |
|       | 300             | 1.973           | 0.299                | 1.328                   | 1.030             | 1.030              | 2.800           | 0.165                | 1.471                   | 1.023             | 1.023                |
|       | 400             | 1.925           | 0.302                | 1.275                   | 1.011             | 1.011              | 2.732           | 0.167                | 1.419                   | 1.001             | 1.001                |
|       | 500             | 1.878           | 0.311                | 1.250                   | 1.015             | 1.015              | 2.665           | 0.173                | 1.401                   | 1.003             | 1.003                |
|       | 600             | 1.965           | 0.294                | 1.294                   | 1.007             | 1.007              | 2.789           | 0.161                | 1.431                   | 0.998             | 0.998                |
|       | 700             | 1.998           | 0.287                | 1.306                   | 1.001             | 1.001              | 2.835           | 0.157                | 1.444                   | 0.997             | 0.997                |
|       | 800             | 1.762           | 0.334                | 1.184                   | 1.019             | 1.019              | 2.501           | 0.188                | 1.344                   | 0.998             | 0.998                |
| $L_5$ | 20/100          | 2.132           | 0.281                | 1.458                   | 1.053             | 1.053              | 3.021           | 0.137                | 1.425                   | 0.949             | 0.949                |
|       | 200             | 2.120           | 0.280                | 1.433                   | 1.040             | 1.040              | 3.004           | 0.140                | 1.440                   | 0.962             | 0.962                |
|       | 300<br>400      | 2.105           | 0.278                | 1.404                   | 1.020             | 1.020              | 2.985           | 0.152                | 1.539                   | 1.032             | 1.052                |
|       | 400<br>500      | 2.034           | 0.280                | 1.340                   | 1.007             | 1.007              | 2.911           | 0.155                | 1.479                   | 1.000             | 1.000                |
|       | 500             | 2.004           | 0.289                | 1.322                   | 1.010             | 1.010              | 2.840           | 0.100                | 1.409                   | 1.015             | 1.015                |
|       | 700             | 2.097           | 0.275                | 1.306                   | 1.002             | 1.002              | 2.972           | 0.149                | 1.499                   | 1.007             | 1.007                |
|       | 800             | 2.132           | 0.207                | 1.365                   | 1.000             | 1.000              | 2.664           | 0.143                | 1.310                   | 1.005             | 1.005                |
|       | 20/100          | 2.258           | 0.310                | 1.249                   | 1.013             | 1.013              | 2.004           | 0.174                | 1.411                   | 0.015             | 0.015                |
| $L_6$ | 20/100          | 2.238           | 0.202                | 1.525                   | 1.044             | 1.044              | 3.186           | 0.122                | 1.423                   | 0.913             | 0.915                |
|       | 200             | 2.245           | 0.201                | 1.300                   | 1.032             | 1.032              | 3.164           | 0.12)                | 1.407                   | 1.036             | 1.036                |
|       | 400             | 2.230           | 0.259                | 1.470                   | 1.018             | 1.010              | 3.104           | 0.140                | 1.575                   | 1.050             | 1.050                |
|       | 500             | 2.170           | 0.202                | 1 386                   | 1.001             | 1.001              | 3 012           | 0.142                | 1.547                   | 1.017             | 1.020                |
|       | 600             | 2.122           | 0.255                | 1 432                   | 0.995             | 0.995              | 3 152           | 0 137                | 1.550                   | 1.020             | 1 011                |
|       | 700             | 2.258           | 0.249                | 1.450                   | 0.992             | 0.992              | 3.204           | 0.134                | 1.568                   | 1.009             | 1.009                |
|       |                 |                 | 0.000                | 1 200                   | 1.007             | 1.007              | 2 826           | 0.162                | 1 473                   | 1.010             | 1.010                |

Table A4.5: Numerical failure loads and their DSM estimates concerning the C<sub>4</sub> and R<sub>4</sub> columns with  $\sigma_{y20}$ =600*MPa*.

|       | T      |                 |                              | <b>C</b> 5       |                   |                    |                 |                        | <b>R</b> 5       |                   |                    |
|-------|--------|-----------------|------------------------------|------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | I(C)   | $\lambda_{FTT}$ | $f_{\pi\pi}/\sigma_{\pi\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{vCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ |
| $L_1$ | 20/100 | 0.508           | 0.931                        | 1.037            | 1.037             | 1.037              | 0.917           | 0.728                  | 1.036            | 1.036             | 1.036              |
| 1     | 200    | 0.505           | 0.871                        | 0.969            | 0.969             | 1.066              | 0.912           | 0.667                  | 0.944            | 0.944             | 1.014              |
|       | 300    | 0.501           | 0.806                        | 0.895            | 0.895             | 1.067              | 0.905           | 0.641                  | 0.903            | 0.903             | 1.032              |
|       | 400    | 0.489           | 0.757                        | 0.837            | 0.837             | 1.055              | 0.883           | 0.581                  | 0.805            | 0.805             | 0.965              |
|       | 500    | 0.477           | 0.769                        | 0.846            | 0.846             | 1.098              | 0.862           | 0.602                  | 0.821            | 0.821             | 1.011              |
|       | 600    | 0.499           | 0.743                        | 0.825            | 0.825             | 1.065              | 0.902           | 0.554                  | 0.779            | 0.779             | 0.950              |
|       | 700    | 0.508           | 0.736                        | 0.820            | 0.820             | 1.022              | 0.917           | 0.541                  | 0.768            | 0.768             | 0.908              |
|       | 800    | 0.448           | 0.786                        | 0.854            | 0.854             | 1.005              | 0.809           | 0.633                  | 0.833            | 0.833             | 0.950              |
| $L_2$ | 20/100 | 0.620           | 0.899                        | 1.056            | 1.056             | 1.056              | 0.987           | 0.682                  | 1.026            | 1.026             | 1.026              |
|       | 200    | 0.616           | 0.840                        | 0.985            | 0.985             | 1.078              | 0.982           | 0.625                  | 0.936            | 0.936             | 0.999              |
|       | 300    | 0.612           | 0.770                        | 0.901            | 0.901             | 1.064              | 0.975           | 0.608                  | 0.905            | 0.905             | 1.024              |
|       | 400    | 0.597           | 0.708                        | 0.821            | 0.821             | 1.025              | 0.951           | 0.555                  | 0.810            | 0.810             | 0.960              |
|       | 500    | 0.582           | 0.724                        | 0.834            | 0.834             | 1.071              | 0.928           | 0.577                  | 0.827            | 0.827             | 1.006              |
|       | 600    | 0.609           | 0.688                        | 0.803            | 0.803             | 1.024              | 0.971           | 0.529                  | 0.785            | 0.785             | 0.944              |
|       | 700    | 0.620           | 0.678                        | 0.796            | 0.796             | 0.980              | 0.987           | 0.515                  | 0.775            | 0.775             | 0.905              |
|       | 800    | 0.546           | 0.746                        | 0.846            | 0.846             | 0.988              | 0.870           | 0.610                  | 0.837            | 0.837             | 0.948              |
| $L_3$ | 20/100 | 0.725           | 0.857                        | 1.068            | 1.068             | 1.068              | 1.056           | 0.637                  | 1.016            | 1.016             | 1.016              |
|       | 200    | 0.721           | 0.804                        | 1.000            | 1.000             | 1.088              | 1.050           | 0.581                  | 0.921            | 0.921             | 0.978              |
|       | 300    | 0.716           | 0.737                        | 0.913            | 0.913             | 1.067              | 1.043           | 0.575                  | 0.907            | 0.907             | 1.016              |
|       | 400    | 0.699           | 0.669                        | 0.820            | 0.820             | 1.011              | 1.018           | 0.529                  | 0.816            | 0.816             | 0.955              |
|       | 500    | 0.681           | 0.688                        | 0.836            | 0.836             | 1.059              | 0.993           | 0.550                  | 0.832            | 0.832             | 0.998              |
|       | 600    | 0.713           | 0.644                        | 0.797            | 0.797             | 1.001              | 1.039           | 0.504                  | 0.792            | 0.792             | 0.940              |
|       | 700    | 0.725           | 0.633                        | 0.789            | 0.789             | 0.959              | 1.056           | 0.490                  | 0.782            | 0.782             | 0.902              |
|       | 800    | 0.639           | 0.715                        | 0.848            | 0.848             | 0.983              | 0.932           | 0.585                  | 0.841            | 0.841             | 0.946              |
| $L_4$ | 20/100 | 0.823           | 0.807                        | 1.072            | 1.072             | 1.072              | 1.124           | 0.593                  | 1.007            | 1.007             | 1.007              |
|       | 200    | 0.819           | 0.762                        | 1.008            | 1.008             | 1.090              | 1.118           | 0.539                  | 0.910            | 0.910             | 0.960              |
|       | 300    | 0.813           | 0.701                        | 0.924            | 0.924             | 1.069              | 1.110           | 0.542                  | 0.907            | 0.907             | 1.006              |
|       | 400    | 0.793           | 0.635                        | 0.827            | 0.827             | 1.005              | 1.084           | 0.503                  | 0.822            | 0.822             | 0.950              |
|       | 500    | 0.774           | 0.657                        | 0.843            | 0.843             | 1.054              | 1.057           | 0.524                  | 0.836            | 0.836             | 0.990              |
|       | 600    | 0.810           | 0.610                        | 0.802            | 0.802             | 0.993              | 1.106           | 0.479                  | 0.800            | 0.800             | 0.935              |
|       | 700    | 0.823           | 0.596                        | 0.791            | 0.791             | 0.949              | 1.124           | 0.466                  | 0.791            | 0.791             | 0.900              |
|       | 800    | 0.726           | 0.686                        | 0.855            | 0.855             | 0.984              | 0.992           | 0.559                  | 0.844            | 0.844             | 0.941              |
| $L_5$ | 20/100 | 0.914           | 0.751                        | 1.066            | 1.066             | 1.066              | 1.192           | 0.552                  | 1.001            | 1.001             | 1.001              |
|       | 200    | 0.909           | 0.715                        | 1.010            | 1.010             | 1.085              | 1.185           | 0.502                  | 0.904            | 0.904             | 0.948              |
|       | 300    | 0.902           | 0.663                        | 0.933            | 0.933             | 1.066              | 1.177           | 0.510                  | 0.910            | 0.910             | 0.997              |
|       | 400    | 0.881           | 0.604                        | 0.836            | 0.836             | 1.003              | 1.148           | 0.478                  | 0.830            | 0.830             | 0.946              |
|       | 500    | 0.859           | 0.626                        | 0.853            | 0.853             | 1.050              | 1.120           | 0.498                  | 0.842            | 0.842             | 0.983              |
|       | 600    | 0.899           | 0.578                        | 0.810            | 0.810             | 0.988              | 1.172           | 0.455                  | 0.809            | 0.809             | 0.930              |
|       | 700    | 0.914           | 0.564                        | 0.800            | 0.800             | 0.946              | 1.192           | 0.442                  | 0.801            | 0.801             | 0.899              |
|       | 800    | 0.806           | 0.659                        | 0.864            | 0.864             | 0.986              | 1.051           | 0.534                  | 0.848            | 0.848             | 0.938              |
| $L_6$ | 20/100 | 0.997           | 0.695                        | 1.053            | 1.053             | 1.053              | 1.257           | 0.515                  | 0.998            | 0.998             | 0.998              |
|       | 200    | 0.992           | 0.667                        | 1.006            | 1.006             | 1.074              | 1.250           | 0.468                  | 0.901            | 0.901             | 0.938              |
|       | 300    | 0.985           | 0.624                        | 0.937            | 0.937             | 1.059              | 1.242           | 0.480                  | 0.915            | 0.915             | 0.991              |
|       | 400    | 0.961           | 0.574                        | 0.845            | 0.845             | 1.000              | 1.212           | 0.454                  | 0.838            | 0.838             | 0.942              |
|       | 500    | 0.937           | 0.597                        | 0.862            | 0.862             | 1.046              | 1.182           | 0.473                  | 0.848            | 0.848             | 0.976              |
|       | 600    | 0.981           | 0.548                        | 0.820            | 0.820             | 0.984              | 1.237           | 0.432                  | 0.819            | 0.819             | 0.927              |
|       | 700    | 0.997           | 0.534                        | 0.810            | 0.810             | 0.944              | 1.257           | 0.419                  | 0.813            | 0.813             | 0.898              |
|       | 800    | 0.879           | 0.631                        | 0.872            | 0.872             | 0.987              | 1.109           | 0.509                  | 0.851            | 0.851             | 0.934              |

Table A5.1: Numerical failure loads and their DSM estimates concerning the C<sub>5</sub> and R<sub>5</sub> columns with  $\sigma_{y20}$ =75*MPa*.

|       | T                       |                 |                          | <b>C</b> 5       |                   |                    |                 |                        | <b>R</b> 5       |                   |                    |
|-------|-------------------------|-----------------|--------------------------|------------------|-------------------|--------------------|-----------------|------------------------|------------------|-------------------|--------------------|
| L     | $I(^{\circ}\mathrm{C})$ | $\lambda_{FTT}$ | $f_{u\pi}/\sigma_{u\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uFFT*}$ | $\lambda_{FTT}$ | $f_{\pi}/\sigma_{\pi}$ | $f_{uT}/f_{uCT}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{uEET*}$ |
| $L_1$ | 20/100                  | 0.718           | 0.886                    | 1.099            | 1.099             | 1.099              | 1.297           | 0.511                  | 1.032            | 1.032             | 1.032              |
| 1     | 200                     | 0.714           | 0.767                    | 0.950            | 0.950             | 1.034              | 1.289           | 0.464                  | 0.931            | 0.931             | 0.965              |
|       | 300                     | 0.709           | 0.768                    | 0.948            | 0.948             | 1.109              | 1.280           | 0.485                  | 0.963            | 0.963             | 1.035              |
|       | 400                     | 0.692           | 0.715                    | 0.873            | 0.873             | 1.077              | 1.249           | 0.466                  | 0.895            | 0.895             | 0.997              |
|       | 500                     | 0.675           | 0.730                    | 0.883            | 0.883             | 1.120              | 1.219           | 0.486                  | 0.905            | 0.905             | 1.032              |
|       | 600                     | 0.706           | 0.697                    | 0.859            | 0.859             | 1.081              | 1.275           | 0.446                  | 0.880            | 0.880             | 0.987              |
|       | 700                     | 0.718           | 0.688                    | 0.854            | 0.854             | 1.040              | 1.297           | 0.433                  | 0.875            | 0.875             | 0.959              |
|       | 800                     | 0.633           | 0.751                    | 0.889            | 0.889             | 1.031              | 1.143           | 0.524                  | 0.906            | 0.906             | 0.988              |
| $L_2$ | 20/100                  | 0.876           | 0.805                    | 1.110            | 1.110             | 1.110              | 1.396           | 0.460                  | 1.040            | 1.040             | 1.040              |
|       | 200                     | 0.871           | 0.734                    | 1.008            | 1.008             | 1.086              | 1.388           | 0.418                  | 0.936            | 0.936             | 0.960              |
|       | 300                     | 0.865           | 0.709                    | 0.969            | 0.969             | 1.113              | 1.378           | 0.440                  | 0.974            | 0.974             | 1.028              |
|       | 400                     | 0.844           | 0.651                    | 0.878            | 0.878             | 1.059              | 1.345           | 0.427                  | 0.911            | 0.911             | 0.991              |
|       | 500                     | 0.823           | 0.671                    | 0.891            | 0.891             | 1.104              | 1.312           | 0.446                  | 0.916            | 0.916             | 1.019              |
|       | 600                     | 0.862           | 0.629                    | 0.858            | 0.858             | 1.053              | 1.373           | 0.408                  | 0.899            | 0.899             | 0.981              |
|       | 700                     | 0.876           | 0.616                    | 0.850            | 0.850             | 1.012              | 1.396           | 0.398                  | 0.900            | 0.900             | 0.962              |
|       | 800                     | 0.773           | 0.699                    | 0.898            | 0.898             | 1.028              | 1.231           | 0.484                  | 0.912            | 0.912             | 0.982              |
| $L_3$ | 20/100                  | 1.025           | 0.701                    | 1.088            | 1.088             | 1.088              | 1.494           | 0.418                  | 1.063            | 1.063             | 1.063              |
|       | 200                     | 1.020           | 0.655                    | 1.012            | 1.012             | 1.077              | 1.485           | 0.380                  | 0.957            | 0.957             | 0.970              |
|       | 300                     | 1.012           | 0.638                    | 0.980            | 0.980             | 1.103              | 1.475           | 0.401                  | 0.996            | 0.996             | 1.030              |
|       | 400                     | 0.988           | 0.593                    | 0.892            | 0.892             | 1.050              | 1.439           | 0.392                  | 0.932            | 0.932             | 0.989              |
|       | 500                     | 0.964           | 0.614                    | 0.906            | 0.906             | 1.094              | 1.404           | 0.409                  | 0.933            | 0.933             | 1.012              |
|       | 600                     | 1.009           | 0.569                    | 0.871            | 0.871             | 1.039              | 1.470           | 0.374                  | 0.925            | 0.925             | 0.981              |
|       | 700                     | 1.025           | 0.555                    | 0.861            | 0.861             | 0.999              | 1.494           | 0.364                  | 0.925            | 0.925             | 0.965              |
|       | 800                     | 0.904           | 0.648                    | 0.913            | 0.913             | 1.030              | 1.317           | 0.446                  | 0.923            | 0.923             | 0.979              |
| $L_4$ | 20/100                  | 1.164           | 0.601                    | 1.059            | 1.059             | 1.059              | 1.590           | 0.383                  | 1.104            | 1.047             | 1.047              |
|       | 200                     | 1.158           | 0.573                    | 1.004            | 1.004             | 1.055              | 1.581           | 0.349                  | 0.995            | 0.948             | 0.948              |
|       | 300                     | 1.149           | 0.563                    | 0.979            | 0.979             | 1.078              | 1.570           | 0.367                  | 1.033            | 0.990             | 0.990              |
|       | 400                     | 1.122           | 0.535                    | 0.905            | 0.905             | 1.038              | 1.532           | 0.361                  | 0.966            | 0.947             | 0.947              |
|       | 500                     | 1.094           | 0.556                    | 0.918            | 0.918             | 1.078              | 1.495           | 0.377                  | 0.959            | 0.959             | 1.012              |
|       | 600                     | 1.145           | 0.511                    | 0.884            | 0.884             | 1.024              | 1.564           | 0.345                  | 0.963            | 0.926             | 0.926              |
|       | 700                     | 1.164           | 0.498                    | 0.879            | 0.879             | 0.992              | 1.590           | 0.335                  | 0.966            | 0.916             | 0.916              |
|       | 800                     | 1.027           | 0.595                    | 0.924            | 0.924             | 1.026              | 1.402           | 0.412                  | 0.939            | 0.939             | 0.981              |
| $L_5$ | 20/100                  | 1.292           | 0.520                    | 1.046            | 1.046             | 1.046              | 1.685           | 0.354                  | 1.148            | 1.032             | 1.032              |
|       | 200                     | 1.285           | 0.501                    | 1.000            | 1.000             | 1.037              | 1.676           | 0.324                  | 1.038            | 0.938             | 0.938              |
|       | 300                     | 1.276           | 0.496                    | 0.980            | 0.980             | 1.055              | 1.664           | 0.340                  | 1.073            | 0.976             | 0.976              |
|       | 400                     | 1.245           | 0.479                    | 0.917            | 0.917             | 1.023              | 1.624           | 0.334                  | 1.003            | 0.933             | 0.933              |
|       | 500                     | 1.215           | 0.500                    | 0.927            | 0.927             | 1.057              | 1.584           | 0.348                  | 0.997            | 0.948             | 0.948              |
|       | 600                     | 1.271           | 0.459                    | 0.902            | 0.902             | 1.012              | 1.658           | 0.319                  | 1.001            | 0.914             | 0.914              |
|       | 700                     | 1.292           | 0.446                    | 0.897            | 0.897             | 0.984              | 1.685           | 0.310                  | 1.005            | 0.904             | 0.904              |
|       | 800                     | 1.140           | 0.540                    | 0.931            | 0.931             | 1.017              | 1.486           | 0.373                  | 0.941            | 0.941             | 0.966              |
| $L_6$ | 20/100                  | 1.410           | 0.457                    | 1.051            | 1.051             | 1.051              | 1.778           | 0.331                  | 1.194            | 1.023             | 1.023              |
|       | 200                     | 1.402           | 0.443                    | 1.010            | 1.010             | 1.034              | 1.768           | 0.304                  | 1.083            | 0.933             | 0.933              |
|       | 300                     | 1.392           | 0.440                    | 0.991            | 0.991             | 1.042              | 1.756           | 0.317                  | 1.114            | 0.965             | 0.965              |
|       | 400                     | 1.359           | 0.431                    | 0.933            | 0.933             | 1.012              | 1.714           | 0.311                  | 1.041            | 0.922             | 0.922              |
|       | 500                     | 1.325           | 0.450                    | 0.939            | 0.939             | 1.040              | 1.671           | 0.324                  | 1.033            | 0.936             | 0.936              |
|       | 600                     | 1.387           | 0.412                    | 0.922            | 0.922             | 1.003              | 1.749           | 0.298                  | 1.040            | 0.904             | 0.904              |
|       | /00                     | 1.410           | 0.400                    | 0.920            | 0.920             | 0.981              | 1.778           | 0.290                  | 1.045            | 0.895             | 0.895              |
|       | 800                     | 1.244           | 0.491                    | 0.938            | 0.938             | 1.007              | 1.568           | 0.355                  | 0.997            | 0.957             | 0.957              |

Table A5.2: Numerical failure loads and their DSM estimates concerning the C<sub>5</sub> and R<sub>5</sub> columns with  $\sigma_{y20}$ =150*MPa*.

|       | T (9C)          |                 |                             | <i>C</i> 5          |                           |                       |                 |                              | <b>R</b> 5 |                      |                    |
|-------|-----------------|-----------------|-----------------------------|---------------------|---------------------------|-----------------------|-----------------|------------------------------|------------|----------------------|--------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{\mu\pi}/\sigma_{\nu T}$ | $f_{\mu T}/f_{nGT}$ | $f_{\mu\tau}/f_{\mu FTT}$ | $f_{\mu T}/f_{nFFT*}$ | $\lambda_{FTT}$ | $f_{\mu\pi}/\sigma_{\nu\pi}$ | fut/fnGT   | $f_{\mu T}/f_{nFTT}$ | $f_{uT}/f_{nFFT*}$ |
| $L_l$ | 20/100          | 1.015           | 0.732                       | 1.126               | 1.126                     | 1.126                 | 1.834           | 0.319                        | 1.224      | 1.020                | 1.020              |
|       | 200             | 1.010           | 0.711                       | 1.089               | 1.089                     | 1.161                 | 1.823           | 0.295                        | 1.117      | 0.936                | 0.936              |
|       | 300             | 1.002           | 0.675                       | 1.028               | 1.028                     | 1.158                 | 1.810           | 0.310                        | 1.157      | 0.975                | 0.975              |
|       | 400             | 0.978           | 0.635                       | 0.948               | 0.948                     | 1.118                 | 1.767           | 0.308                        | 1.095      | 0.943                | 0.943              |
|       | 500             | 0.954           | 0.655                       | 0.959               | 0.959                     | 1.160                 | 1.723           | 0.320                        | 1.085      | 0.956                | 0.956              |
|       | 600             | 0.999           | 0.614                       | 0.931               | 0.931                     | 1.114                 | 1.804           | 0.297                        | 1.101      | 0.931                | 0.931              |
|       | 700             | 1.015           | 0.601                       | 0.925               | 0.925                     | 1.075                 | 1.834           | 0.290                        | 1.112      | 0.927                | 0.927              |
|       | 800             | 0.895           | 0.687                       | 0.961               | 0.961                     | 1.086                 | 1.617           | 0.351                        | 1.047      | 0.977                | 0.977              |
| $L_2$ | 20/100          | 1.239           | 0.565                       | 1.074               | 1.074                     | 1.074                 | 1.974           | 0.294                        | 1.307      | 1.019                | 1.019              |
|       | 200             | 1.232           | 0.557                       | 1.052               | 1.052                     | 1.098                 | 1.963           | 0.273                        | 1.199      | 0.939                | 0.939              |
|       | 300             | 1.223           | 0.544                       | 1.017               | 1.017                     | 1.106                 | 1.949           | 0.285                        | 1.233      | 0.972                | 0.972              |
|       | 400             | 1.194           | 0.529                       | 0.961               | 0.961                     | 1.084                 | 1.902           | 0.282                        | 1.164      | 0.938                | 0.938              |
|       | 500             | 1.165           | 0.550                       | 0.970               | 0.970                     | 1.121                 | 1.855           | 0.292                        | 1.147      | 0.945                | 0.945              |
|       | 600             | 1.219           | 0.508                       | 0.946               | 0.946                     | 1.076                 | 1.942           | 0.273                        | 1.175      | 0.929                | 0.929              |
|       | 700             | 1.239           | 0.494                       | 0.939               | 0.939                     | 1.043                 | 1.974           | 0.268                        | 1.189      | 0.927                | 0.927              |
|       | 800             | 1.093           | 0.592                       | 0.976               | 0.976                     | 1.073                 | 1.741           | 0.318                        | 1.099      | 0.960                | 0.960              |
| $L_3$ | 20/100          | 1.450           | 0.447                       | 1.077               | 1.077                     | 1.077                 | 2.113           | 0.275                        | 1.397      | 1.024                | 1.024              |
|       | 200             | 1.442           | 0.443                       | 1.057               | 1.057                     | 1.077                 | 2.101           | 0.256                        | 1.289      | 0.950                | 0.950              |
|       | 300             | 1.432           | 0.435                       | 1.027               | 1.027                     | 1.072                 | 2.086           | 0.265                        | 1.316      | 0.976                | 0.976              |
|       | 400             | 1.397           | 0.433                       | 0.980               | 0.980                     | 1.053                 | 2.036           | 0.263                        | 1.241      | 0.941                | 0.941              |
|       | 500             | 1.363           | 0.452                       | 0.983               | 0.983                     | 1.078                 | 1.986           | 0.271                        | 1.219      | 0.945                | 0.945              |
|       | 600             | 1.426           | 0.416                       | 0.974               | 0.974                     | 1.047                 | 2.078           | 0.255                        | 1.257      | 0.935                | 0.935              |
|       | 700             | 1.450           | 0.404                       | 0.974               | 0.974                     | 1.027                 | 2.113           | 0.251                        | 1.277      | 0.936                | 0.936              |
|       | 800             | 1.279           | 0.494                       | 0.980               | 0.980                     | 1.047                 | 1.863           | 0.293                        | 1.158      | 0.951                | 0.951              |
| $L_4$ | 20/100          | 1.646           | 0.371                       | 1.147               | 1.065                     | 1.065                 | 2.249           | 0.259                        | 1.492      | 1.034                | 1.034              |
|       | 200             | 1.637           | 0.368                       | 1.124               | 1.048                     | 1.048                 | 2.236           | 0.242                        | 1.383      | 0.962                | 0.962              |
|       | 300             | 1.626           | 0.362                       | 1.092               | 1.024                     | 1.024                 | 2.221           | 0.250                        | 1.407      | 0.986                | 0.986              |
|       | 400             | 1.586           | 0.362                       | 1.039               | 0.993                     | 0.993                 | 2.167           | 0.248                        | 1.326      | 0.950                | 0.950              |
|       | 500             | 1.547           | 0.378                       | 1.031               | 1.005                     | 1.005                 | 2.114           | 0.255                        | 1.297      | 0.950                | 0.950              |
|       | 600             | 1.620           | 0.348                       | 1.040               | 0.978                     | 0.978                 | 2.212           | 0.242                        | 1.348      | 0.948                | 0.948              |
|       | 700             | 1.646           | 0.339                       | 1.046               | 0.971                     | 0.971                 | 2.249           | 0.238                        | 1.371      | 0.950                | 0.950              |
|       | 800             | 1.452           | 0.416                       | 1.005               | 1.005                     | 1.039                 | 1.983           | 0.273                        | 1.223      | 0.949                | 0.949              |
| $L_5$ | 20/100          | 1.828           | 0.321                       | 1.222               | 1.045                     | 1.045                 | 2.383           | 0.246                        | 1.591      | 1.046                | 1.046              |
|       | 200             | 1.817           | 0.318                       | 1.197               | 1.028                     | 1.028                 | 2.370           | 0.231                        | 1.477      | 0.976                | 0.976              |
|       | 300             | 1.805           | 0.313                       | 1.162               | 1.004                     | 1.004                 | 2.353           | 0.238                        | 1.502      | 0.998                | 0.998              |
|       | 400             | 1.761           | 0.313                       | 1.106               | 0.973                     | 0.973                 | 2.296           | 0.236                        | 1.416      | 0.963                | 0.963              |
|       | 500             | 1.718           | 0.326                       | 1.095               | 0.984                     | 0.984                 | 2.240           | 0.242                        | 1.383      | 0.961                | 0.961              |
|       | 600             | 1.798           | 0.301                       | 1.109               | 0.961                     | 0.961                 | 2.344           | 0.230                        | 1.442      | 0.962                | 0.962              |
|       | 700             | 1.828           | 0.293                       | 1.117               | 0.956                     | 0.956                 | 2.383           | 0.227                        | 1.468      | 0.965                | 0.965              |
|       | 800             | 1.612           | 0.356                       | 1.053               | 0.995                     | 0.995                 | 2.102           | 0.257                        | 1.294      | 0.953                | 0.953              |
| $L_6$ | 20/100          | 1.994           | 0.284                       | 1.288               | 1.028                     | 1.028                 | 2.515           | 0.235                        | 1.691      | 1.059                | 1.059              |
|       | 200             | 1.983           | 0.281                       | 1.261               | 1.011                     | 1.011                 | 2.501           | 0.220                        | 1.570      | 0.988                | 0.988              |
|       | 300             | 1.969           | 0.277                       | 1.224               | 0.987                     | 0.987                 | 2.483           | 0.227                        | 1.597      | 1.011                | 1.011              |
|       | 400             | 1.922           | 0.277                       | 1.165               | 0.957                     | 0.957                 | 2.423           | 0.225                        | 1.508      | 0.976                | 0.976              |
|       | 500             | 1.874           | 0.288                       | 1.153               | 0.966                     | 0.966                 | 2.364           | 0.231                        | 1.470      | 0.973                | 0.973              |
|       | 600             | 1.962           | 0.267                       | 1.170               | 0.946                     | 0.946                 | 2.474           | 0.220                        | 1.536      | 0.976                | 0.976              |
|       | 700             | 1.994           | 0.259                       | 1.176               | 0.938                     | 0.938                 | 2.515           | 0.217                        | 1.563      | 0.978                | 0.978              |
|       | 800             | 1.759           | 0.315                       | 1.112               | 0.980                     | 0.980                 | 2.218           | 0.244                        | 1.370      | 0.961                | 0.961              |

Table A5.3: Numerical failure loads and their DSM estimates concerning the C<sub>5</sub> and R<sub>5</sub> columns with  $\sigma_{y20}$ =300*MPa*.

| I     | T (9C)          |                 |                      | <i>C</i> 5              |           |                      |                 |                      | <b>R</b> 5               |                   |                    |
|-------|-----------------|-----------------|----------------------|-------------------------|-----------|----------------------|-----------------|----------------------|--------------------------|-------------------|--------------------|
| L     | $I(\mathbf{C})$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu T}/f_{\mu G T}$ | fut/fnFTT | $f_{uT}/f_{vE} ET^*$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu\tau}/f_{\mu GT}$ | $f_{uT}/f_{nFTT}$ | $f_{uT}/f_{nEET*}$ |
| $L_1$ | 20/100          | 1.243           | 0.562                | 1.074                   | 1.074     | 1.074                | 2.246           | 0.258                | 1.481                    | 1.027             | 1.027              |
|       | 200             | 1.236           | 0.559                | 1.060                   | 1.060     | 1.105                | 2.233           | 0.242                | 1.376                    | 0.959             | 0.959              |
|       | 300             | 1.228           | 0.550                | 1.034                   | 1.034     | 1.123                | 2.217           | 0.253                | 1.416                    | 0.993             | 0.993              |
|       | 400             | 1.198           | 0.542                | 0.989                   | 0.989     | 1.115                | 2.164           | 0.253                | 1.349                    | 0.968             | 0.968              |
|       | 500             | 1.169           | 0.564                | 0.998                   | 0.998     | 1.152                | 2.111           | 0.259                | 1.317                    | 0.966             | 0.966              |
|       | 600             | 1.223           | 0.522                | 0.976                   | 0.976     | 1.109                | 2.209           | 0.247                | 1.374                    | 0.967             | 0.967              |
|       | 700             | 1.243           | 0.508                | 0.971                   | 0.971     | 1.077                | 2.246           | 0.243                | 1.398                    | 0.969             | 0.969              |
|       | 800             | 1.097           | 0.608                | 1.005                   | 1.005     | 1.105                | 1.980           | 0.276                | 1.236                    | 0.961             | 0.961              |
| $L_2$ | 20/100          | 1.518           | 0.417                | 1.094                   | 1.084     | 1.084                | 2.418           | 0.241                | 1.609                    | 1.044             | 1.044              |
|       | 200             | 1.509           | 0.415                | 1.076                   | 1.071     | 1.071                | 2.404           | 0.227                | 1.497                    | 0.976             | 0.976              |
|       | 300             | 1.498           | 0.411                | 1.051                   | 1.051     | 1.081                | 2.387           | 0.237                | 1.540                    | 1.010             | 1.010              |
|       | 400             | 1.462           | 0.413                | 1.012                   | 1.012     | 1.067                | 2.330           | 0.237                | 1.467                    | 0.984             | 0.984              |
|       | 500             | 1.426           | 0.431                | 1.011                   | 1.011     | 1.088                | 2.272           | 0.243                | 1.430                    | 0.981             | 0.981              |
|       | 600             | 1.493           | 0.397                | 1.010                   | 1.010     | 1.064                | 2.378           | 0.232                | 1.496                    | 0.985             | 0.985              |
|       | 700             | 1.518           | 0.386                | 1.014                   | 1.004     | 1.004                | 2.418           | 0.228                | 1.523                    | 0.988             | 0.988              |
|       | 800             | 1.338           | 0.475                | 1.004                   | 1.004     | 1.061                | 2.132           | 0.257                | 1.334                    | 0.969             | 0.969              |
| $L_3$ | 20/100          | 1.776           | 0.334                | 1.202                   | 1.051     | 1.051                | 2.587           | 0.228                | 1.740                    | 1.061             | 1.061              |
|       | 200             | 1.766           | 0.332                | 1.180                   | 1.037     | 1.037                | 2.573           | 0.215                | 1.621                    | 0.994             | 0.994              |
|       | 300             | 1.754           | 0.329                | 1.152                   | 1.018     | 1.018                | 2.555           | 0.224                | 1.665                    | 1.028             | 1.028              |
|       | 400             | 1.711           | 0.331                | 1.104                   | 0.994     | 0.994                | 2.493           | 0.224                | 1.588                    | 1.002             | 1.002              |
|       | 500             | 1.669           | 0.344                | 1.093                   | 1.004     | 1.004                | 2.432           | 0.229                | 1.547                    | 0.998             | 0.998              |
|       | 600             | 1.747           | 0.319                | 1.111                   | 0.984     | 0.984                | 2.545           | 0.219                | 1.619                    | 1.003             | 1.003              |
|       | 700             | 1.776           | 0.310                | 1.116                   | 0.976     | 0.976                | 2.587           | 0.216                | 1.648                    | 1.005             | 1.005              |
|       | 800             | 1.566           | 0.378                | 1.057                   | 1.021     | 1.021                | 2.282           | 0.242                | 1.439                    | 0.984             | 0.984              |
| $L_4$ | 20/100          | 2.016           | 0.283                | 1.314                   | 1.040     | 1.040                | 2.754           | 0.216                | 1.867                    | 1.076             | 1.076              |
|       | 200             | 2.005           | 0.281                | 1.290                   | 1.025     | 1.025                | 2.739           | 0.203                | 1.735                    | 1.005             | 1.005              |
|       | 300             | 1.991           | 0.278                | 1.257                   | 1.005     | 1.005                | 2.720           | 0.212                | 1.789                    | 1.043             | 1.043              |
|       | 400             | 1.943           | 0.280                | 1.204                   | 0.981     | 0.981                | 2.654           | 0.212                | 1.707                    | 1.017             | 1.017              |
|       | 500             | 1.895           | 0.290                | 1.188                   | 0.987     | 0.987                | 2.589           | 0.218                | 1.663                    | 1.014             | 1.014              |
|       | 600             | 1.984           | 0.271                | 1.214                   | 0.973     | 0.973                | 2.710           | 0.208                | 1.739                    | 1.018             | 1.018              |
|       | 700             | 2.016           | 0.263                | 1.219                   | 0.965     | 0.965                | 2.754           | 0.204                | 1.769                    | 1.020             | 1.020              |
|       | 800             | 1.778           | 0.317                | 1.142                   | 0.998     | 0.998                | 2.429           | 0.230                | 1.547                    | 0.999             | 0.999              |
| $L_5$ | 20/100          | 2.238           | 0.246                | 1.407                   | 1.025     | 1.025                | 2.919           | 0.205                | 1.991                    | 1.089             | 1.089              |
|       | 200             | 2.226           | 0.245                | 1.382                   | 1.011     | 1.011                | 2.902           | 0.192                | 1.845                    | 1.014             | 1.014              |
|       | 300             | 2.210           | 0.242                | 1.348                   | 0.992     | 0.992                | 2.882           | 0.201                | 1.907                    | 1.055             | 1.055              |
|       | 400             | 2.157           | 0.244                | 1.292                   | 0.909     | 0.909                | 2.812           | 0.202                | 1.821                    | 1.030             | 1.030              |
|       | 500             | 2.104           | 0.253                | 1.275                   | 0.975     | 0.975                | 2.743           | 0.207                | 1.//0                    | 1.028             | 1.028              |
|       | 700             | 2.202           | 0.250                | 1.302                   | 0.901     | 0.901                | 2.071           | 0.197                | 1.034                    | 1.029             | 1.029              |
|       | 700<br>800      | 2.230           | 0.250                | 1.313                   | 0.937     | 0.937                | 2.919           | 0.194                | 1.004                    | 1.051             | 1.051              |
| I     | 20/100          | 2.442           | 0.275                | 1.222                   | 0.965     | 0.965                | 2.374           | 0.219                | 2.106                    | 1.014             | 1.014              |
| $L_6$ | 20/100          | 2.442           | 0.213                | 1.403                   | 0.990     | 0.990                | 3.060           | 0.195                | 2.100                    | 1.097             | 1.097              |
|       | 200             | 2.429           | 0.214                | 1.442                   | 0.965     | 0.965                | 3.003           | 0.162                | 2.018                    | 1.020             | 1.020              |
|       | 400             | 2.412           | 0.212                | 1.409                   | 0.900     | 0.900                | 2 068           | 0.191                | 2.010                    | 1.004             | 1.004              |
|       | 500             | 2.354           | 0.214                | 1 338                   | 0.946     | 0.940                | 2.900           | 0.192                | 1.920                    | 1.039             | 1.039              |
|       | 600             | 2.200           | 0.223                | 1.350                   | 0.938     | 0.938                | 3 030           | 0.197                | 1.005                    | 1.030             | 1.030              |
|       | 700             | 2.403           | 0.207                | 1 370                   | 0.931     | 0.930                | 3 080           | 0 184                | 1 991                    | 1.037             | 1.037              |
|       | 800             | 2.154           | 0.243                | 1.286                   | 0.966     | 0.966                | 2.716           | 0.209                | 1.758                    | 1.026             | 1.026              |
|       |                 |                 |                      |                         |           |                      |                 |                      |                          |                   |                    |

Table A5.4: Numerical failure loads and their DSM estimates concerning the C<sub>5</sub> and R<sub>5</sub> columns with  $\sigma_{y20}$ =450 MPa.

| T     | T                       |                 |                          | <i>C</i> 5 |                   |                    |                 |                      | <b>R</b> 5                |                   |                    |
|-------|-------------------------|-----------------|--------------------------|------------|-------------------|--------------------|-----------------|----------------------|---------------------------|-------------------|--------------------|
| L     | $I(^{\circ}\mathrm{C})$ | $\lambda_{FTT}$ | $f_{u\pi}/\sigma_{u\pi}$ | fut/freet  | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vFET*}$ | $\lambda_{FTT}$ | $f_{uT}/\sigma_{vT}$ | $f_{\mu\tau}/f_{\mu G T}$ | $f_{uT}/f_{uETT}$ | $f_{uT}/f_{vEET*}$ |
| $L_1$ | 20/100                  | 1.436           | 0.444                    | 1.053      | 1.053             | 1.053              | 2.593           | 0.226                | 1.731                     | 1.054             | 1.054              |
| 1     | 200                     | 1.428           | 0.446                    | 1.046      | 1.046             | 1.067              | 2.579           | 0.212                | 1.611                     | 0.986             | 0.986              |
|       | 300                     | 1.418           | 0.444                    | 1.031      | 1.031             | 1.079              | 2.560           | 0.223                | 1.667                     | 1.027             | 1.027              |
|       | 400                     | 1.384           | 0.451                    | 1.005      | 1.005             | 1.083              | 2.499           | 0.224                | 1.597                     | 1.005             | 1.005              |
|       | 500                     | 1.349           | 0.471                    | 1.009      | 1.009             | 1.111              | 2.437           | 0.230                | 1.560                     | 1.004             | 1.004              |
|       | 600                     | 1.412           | 0.434                    | 0.999      | 0.999             | 1.079              | 2.551           | 0.220                | 1.632                     | 1.008             | 1.008              |
|       | 700                     | 1.436           | 0.421                    | 0.998      | 0.998             | 1.057              | 2.593           | 0.216                | 1.659                     | 1.010             | 1.010              |
|       | 800                     | 1.266           | 0.519                    | 1.015      | 1.015             | 1.085              | 2.287           | 0.244                | 1.453                     | 0.991             | 0.991              |
| $L_2$ | 20/100                  | 1.752           | 0.337                    | 1.179      | 1.042             | 1.042              | 2.792           | 0.212                | 1.882                     | 1.071             | 1.071              |
|       | 200                     | 1.743           | 0.335                    | 1.161      | 1.031             | 1.031              | 2.776           | 0.199                | 1.748                     | 1.000             | 1.000              |
|       | 300                     | 1.730           | 0.333                    | 1.137      | 1.015             | 1.015              | 2.757           | 0.209                | 1.813                     | 1.044             | 1.044              |
|       | 400                     | 1.689           | 0.338                    | 1.097      | 0.999             | 0.999              | 2.690           | 0.211                | 1.741                     | 1.025             | 1.025              |
|       | 500                     | 1.647           | 0.351                    | 1.086      | 1.009             | 1.009              | 2.624           | 0.216                | 1.698                     | 1.023             | 1.023              |
|       | 600                     | 1.724           | 0.326                    | 1.105      | 0.989             | 0.989              | 2.746           | 0.206                | 1.774                     | 1.026             | 1.026              |
|       | 700                     | 1.752           | 0.318                    | 1.113      | 0.984             | 0.984              | 2.792           | 0.203                | 1.803                     | 1.027             | 1.027              |
|       | 800                     | 1.545           | 0.387                    | 1.055      | 1.029             | 1.029              | 2.462           | 0.229                | 1.582                     | 1.009             | 1.009              |
| $L_3$ | 20/100                  | 2.051           | 0.276                    | 1.325      | 1.035             | 1.035              | 2.988           | 0.199                | 2.027                     | 1.085             | 1.085              |
|       | 200                     | 2.039           | 0.275                    | 1.305      | 1.023             | 1.023              | 2.971           | 0.186                | 1.876                     | 1.010             | 1.010              |
|       | 300                     | 2.025           | 0.273                    | 1.278      | 1.007             | 1.007              | 2.950           | 0.197                | 1.954                     | 1.059             | 1.059              |
|       | 400                     | 1.976           | 0.276                    | 1.231      | 0.990             | 0.990              | 2.879           | 0.198                | 1.875                     | 1.039             | 1.039              |
|       | 500                     | 1.927           | 0.286                    | 1.213      | 0.994             | 0.994              | 2.808           | 0.204                | 1.833                     | 1.038             | 1.038              |
|       | 600                     | 2.017           | 0.268                    | 1.244      | 0.984             | 0.984              | 2.939           | 0.194                | 1.912                     | 1.039             | 1.039              |
|       | 700                     | 2.051           | 0.262                    | 1.256      | 0.981             | 0.981              | 2.988           | 0.191                | 1.941                     | 1.040             | 1.040              |
|       | 800                     | 1.808           | 0.312                    | 1.163      | 1.003             | 1.003              | 2.635           | 0.216                | 1.711                     | 1.027             | 1.027              |
| $L_4$ | 20/100                  | 2.328           | 0.235                    | 1.454      | 1.027             | 1.027              | 3.181           | 0.188                | 2.163                     | 1.095             | 1.095              |
|       | 200                     | 2.315           | 0.234                    | 1.432      | 1.016             | 1.016              | 3.163           | 0.175                | 1.997                     | 1.015             | 1.015              |
|       | 300                     | 2.299           | 0.233                    | 1.402      | 1.000             | 1.000              | 3.141           | 0.186                | 2.086                     | 1.068             | 1.068              |
|       | 400                     | 2.244           | 0.235                    | 1.351      | 0.982             | 0.982              | 3.065           | 0.187                | 2.004                     | 1.049             | 1.049              |
|       | 500                     | 2.188           | 0.244                    | 1.331      | 0.987             | 0.987              | 2.989           | 0.193                | 1.961                     | 1.050             | 1.050              |
|       | 600                     | 2.290           | 0.228                    | 1.365      | 0.977             | 0.977              | 3.129           | 0.183                | 2.040                     | 1.048             | 1.048              |
|       | 700                     | 2.328           | 0.223                    | 1.375      | 0.971             | 0.971              | 3.181           | 0.179                | 2.069                     | 1.047             | 1.047              |
|       | 800                     | 2.053           | 0.265                    | 1.273      | 0.993             | 0.993              | 2.805           | 0.205                | 1.836                     | 1.041             | 1.041              |
| $L_5$ | 20/100                  | 2.585           | 0.202                    | 1.538      | 1.000             | 1.000              | 3.370           | 0.176                | 2.279                     | 1.094             | 1.094              |
|       | 200                     | 2.570           | 0.201                    | 1.517      | 0.991             | 0.991              | 3.351           | 0.164                | 2.105                     | 1.016             | 1.016              |
|       | 300                     | 2.552           | 0.200                    | 1.487      | 0.977             | 0.977              | 3.328           | 0.175                | 2.208                     | 1.073             | 1.073              |
|       | 400                     | 2.491           | 0.203                    | 1.437      | 0.963             | 0.963              | 3.248           | 0.177                | 2.126                     | 1.056             | 1.056              |
|       | 500                     | 2.429           | 0.211                    | 1.420      | 0.969             | 0.969              | 3.167           | 0.182                | 2.081                     | 1.057             | 1.057              |
|       | 600                     | 2.543           | 0.196                    | 1.448      | 0.954             | 0.954              | 3.315           | 0.172                | 2.159                     | 1.052             | 1.052              |
|       | 700                     | 2.585           | 0.192                    | 1.459      | 0.949             | 0.949              | 3.370           | 0.169                | 2.187                     | 1.050             | 1.050              |
|       | 800                     | 2.279           | 0.230                    | 1.363      | 0.979             | 0.979              | 2.972           | 0.194                | 1.954                     | 1.052             | 1.052              |
| $L_6$ | 20/100                  | 2.820           | 0.173                    | 1.571      | 0.953             | 0.953              | 3.556           | 0.157                | 2.271                     | 1.038             | 1.038              |
|       | 200                     | 2.805           | 0.173                    | 1.552      | 0.946             | 0.946              | 3.537           | 0.154                | 2.200                     | 1.011             | 1.011              |
|       | 300                     | 2.785           | 0.173                    | 1.526      | 0.936             | 0.936              | 3.512           | 0.165                | 2.318                     | 1.072             | 1.072              |
|       | 400                     | 2.718           | 0.176                    | 1.481      | 0.926             | 0.926              | 3.427           | 0.167                | 2.234                     | 1.057             | 1.057              |
|       | 500                     | 2.651           | 0.183                    | 1.467      | 0.935             | 0.935              | 3.343           | 0.172                | 2.191                     | 1.060             | 1.060              |
|       | 500                     | 2.774           | 0.170                    | 1.488      | 0.915             | 0.915              | 3.499           | 0.162                | 2.266                     | 1.052             | 1.052              |
|       | /00                     | 2.820           | 0.165                    | 1.496      | 0.908             | 0.908              | 3.336           | 0.159                | 2.293                     | 1.049             | 1.049              |
|       | 800                     | 2.487           | 0.201                    | 1.420      | 0.952             | 0.952              | 3.137           | 0.184                | 2.065                     | 1.058             | 1.058              |

Table A5.5: Numerical failure loads and their DSM estimates concerning the C<sub>5</sub> and R<sub>5</sub> columns with  $\sigma_{y20}$ =600*MPa*.