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Abstract 

 

The significant increase in the use of high-strength steel has led to a renewed interest in the strength 

and stability design criteria for hollow sections, owing to the fact that the majority of the resulting 

cross-sections and beam-columns are to be classified as slender. This paper illustrates a novel 

approach for the design of slender hollow section members loaded in compression and general 

bending about both main axes. It introduces a “Generalized Slenderness-based Resistance 

Method” (GSRM), which was developed over the course of an extensive, multinational and EU-

funded research project – HOLLOSSTAB (2016-2019). The GSRM further generalizes the 

advanced cross-sectional definitions of local and global slenderness used in established strength 

design methods such as the Direct Strength Method, the Continuous Strength Method and the 

Overall Interaction Concept, leading to a definition of slenderness that accounts for the overall 

load case as well as for the elastic buckling strength. This generalized definition of slenderness is 

used as the basis for the derivation of new design formulae and calibration coefficients for the 

studied cases, which very closely follow the underlying mechanics while remaining easily 

handleable. The presented study also includes an analysis of the underlying level of reliability of 

the GSRM and a representation of its advantages over conventional design methods for slender 

hollow-section beam-columns. The result of the HOLLOSSTAB project is thus a set of novel 

design formulae that can be used in combination with bespoke software tools to efficiently and 

safely determine the ultimate strength of high-strength steel hollow sections.  

 

1 Introduction 

 

Current design standards often provide insufficient accuracy and economy for the design of hollow 

structural sections (HSS) at a cross-section level – where local buckling effects are prominent – 

and at a global level, when column-like flexural buckling occurs. The background of the American 

(AISC) design rules can be found in the work of Bjorhovde, R. (1972, 1992) and more recently 

Galambos, T. V. (1998) and Ziemian, R. D. (2010). Cross-sections are divided into categories and 

the design curve is defined by the squash load in the very stocky range, by a knock-down factor 

with respect to the Euler load in the slender range, and a transitional function in the intermediate 
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range. The approach and framework of the European standards (Eurocodes), on the other hand, is 

based primarily on the formulation of various column buckling curves and,  for beam-columns, on 

the application of an interaction formulation that takes the column resistance as a starting point.. 

The rules for columns in Eurocode 3: part 1-1 (2018) are based on the work of Rondal et Maquoi 

(1979), whose formulation makes use of the concepts first developed by Ayrton and Perry (1886).  

The formulation is restricted to cases with pure external compression, but accounts for bending 

moments that develop in imperfect columns in a rational, mechanically-based manner.  

 

One of the objectives of the HOLLOSSTAB project was to derive specific rules for more general 

load cases in hollow section beam-columns. Thereby, a new method – more general than the 

current European and North-American design rules – was developed, the so-called “Generalized 

Slenderness-based Resistance Method” (GSRM). This method further generalizes the advanced 

cross-sectional definitions of local slenderness used in established strength design methods such 

as the Direct Strength Method, applying it also to global buckling problems under arbitrary 

compression and bending loading. While the GSRM design rules for the cross-section resistance 

are already described in Toffolon and Taras (2019a and 2019b), the current paper focuses on the 

rules for global buckling. The following sections examine the derivation of design rules for beam-

columns against global buckling, starting with a review of the design rules found in the literature 

and adapted to fit into the Eurocode 3 framework. Then, the new GSRM beam-column design 

proposal is derived from the previously shown formulations. This derivation is based on second-

order theory and basic structural mechanics. A number of calibration factors are introduced, which 

help to adapt the mechanically derived formulation to better describe the real, elasto-plastic non-

linear behavior as observed in physical and numerical tests. Finally, a comparison between the 

new GSRM rules and the current AISC and EC3 design rules is made, thus validating the newly 

developed formulation. 

 

2 Ayrton-Perry formulation and Eurocode 3 design rule for columns 

As stated above, the original formula to describe the behavior of columns in flexural (global) 

buckling was first described by Ayrton and Perry in 1886. This approach – first employed for a 

practical case by Robertson (1925) – proposes to introduce an equivalent imperfection of 

sinusoidal shape and amplitude 𝑒0 into a second-order analysis and stress design of a pin-ended 

model column, and to use this imperfection amplitude as a calibration factor to describe the 

strength of real columns, as observed e.g. in tests. Ayrton and Perry thus derived their formulation 

from the elastic buckling amplification factor for a pin-ended column under pure compression with 

an initial imperfection𝑒0, leading to the total deflection 

 

 𝑤 = 𝛿 + 𝑒0 =
𝑒0

1−
𝑁𝑏

𝑁𝑐𝑟
⁄

 (1) 

 

where: 

𝛿 is the member deflection due to the applied load from the base state 

𝑤 is the total deflection 

𝑁𝑏 is the applied load, which finally leads to column failure.  

𝑁𝑐𝑟 is the axial force at the first bifurcation point, or “Euler load”. 
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Crucially, in the Ayrton-Perry approach a linear cross-sectional failure criterion is introduced, i.e. 

a linear interaction surface for compression forces and moments is used. At failure, this leads to 

the following equation: 

 

 
𝑁𝑏

𝐴𝑓𝑦
  +   

𝑁𝑏𝑒0

𝑊𝑦𝑓𝑦
  ∙   

1

1−
𝑁𝑏

𝑁𝑐𝑟
⁄

= 1.0 (2) 

 

where: 

𝐴 is the cross-section area. 

𝑊𝑦 the cross-section modulus for bending about the y-axis. 

𝑓𝑦 is the yield stress. 

 

Current design standards such as the Eurocode use a reduction factor of the cross-sectional plastic 

resistance in order to define the member strength, and they plot it as a function of the member 

slenderness. The following variables may thus be introduced: 

 

  χ𝑦 =
𝑁𝑏

𝐴𝑓𝑦
 (3) 

  𝜆̅𝑦 = √
𝐴𝑓𝑦

𝑁𝑐𝑟,𝑦
 (4) 

  𝜂𝑖𝑚𝑝 =
𝐴𝑒0

𝑊𝑦
 (5) 

 

where 𝜒𝑦 and 𝜆̅𝑦 are, respectively, the knock-down factor and normalized slenderness for buckling 

about the y-axis, and 𝜂𝑖𝑚𝑝 is a normalization of 𝑒0 by the section core width. These definitions 

bring the above limit-state equation to the following quadratic format: 

 

 χ𝑦 + 𝜂𝑖𝑚𝑝 ∙
χ𝑦

1−χ𝑦𝜆̅𝑦
2 = 1.0 (6) 

 

Which may be solved, leading to the well-known solution: 

 

 χ𝑦 =
1

𝛷+√𝛷2−𝜆̅𝑦
2
  (7) 

with   𝛷 = 0,5 ⋅ (1 + 𝜂𝑖𝑚𝑝 + 𝜆̅𝑦
2 ) (8) 

 

In Eurocode 3, following Ayrton and Perry’s original idea, the still-general term 𝜂𝑖𝑚𝑝 is replaced 

by a formula that makes this imperfection a function of slenderness, of a plateau value to account 

for stocky columns not failing before the squash load, and of a calibration factor  which accounts 

for residual stresses and production differences, here denoted as 𝛼𝐸𝐶3: 

 𝜂𝑖𝑚𝑝 = 𝛼𝐸𝐶3(𝜆̅𝑦 − 0.2) (9) 
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Fig. 1. On the left the parameters 𝜂𝑖𝑚𝑝 from the EC3 formulation and the EC3 buckling curves are represented in the 

𝜒 - 𝜆̅𝑦plot. On the right a representation of the 𝜒 factor in the Ayrton-Perry formulation plotted in the m-n diagram. 

 

Five different values of EC3, and thus the five well-known “European buckling curves” (a0 to d), 

exist in Eurocode 3. The 𝛼𝐸𝐶3 values are given in Table 1 . 

 
Table 1. EN 1993-1-1. Imperfection factors for the determination of the buckling curve. 

      

Buckling curve a0 a b c d 

      

      

Imperfection factor 𝛼 0.13 0.21 0.34 0.49 0.76 

      

 

The left-hand side of Fig. 1 shows the resulting European column buckling curves. As can be seen, 

the calibration to the current EC3 rules, originally performed by Rondal et Maquoi (1979), matches 

the previously-established, experimental ECCS buckling curves quite accurately across all 

slenderness ranges. In the right-side plot in Fig. 1, the underlying principle of the Ayrton-Perry 

formulation is shown once again: the non-linear elastic second-order “load-moment” path, shown 

by the dashed line, at one point intersects the cross-sectional failure surface - given by a straight 

line in the in-plane case. The level of axial force at this point is the buckling load of a column, 

while its normalized value (by a local, cross-sectional resistance “NL”) is the knock-down factor 

y.  

 

3 Derivation of the global buckling of beam-columns for the GSRM – monoaxial bending 

The following derivation for beam-columns is first carried out only for the in-plane bending case 

and is based on and makes use of the same basic concepts as the Ayrton-Perry derivation for the 

column. Again, a linear cross-sectional failure criterion is used, in combination with a normalized 

representation of the “imperfection” of, in this case, of the load eccentricity represented by the 

bending moment. Initially discounting the imperfection effect (which will be reintroduced later), 

the bending moment eccentricity M/N can be normalized by the section core width. For the in-
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plane case, for which the full derivation is shown in the following, this corresponds to the 

introduction of the following definition of 𝜂𝑦. 

 

 𝜂𝑦 =

𝑀𝑦

𝑊𝑦𝑓𝑦
𝑁

𝐴𝑓𝑦

 (10) 

 

Taking into account also the preceding step of the determination of the cross-sectional capacity, 

and introducing the assumption that the linear failure surface of any surface can be described with 

sufficient accuracy (for the intended purpose) as being “parallel” to the elastic, first-yield failure 

surface, the compression resistance and the bending moment resistance in y (in-plane bending) are 

a function of χ𝐿 (see Toffolon and Taras 2019): 

 

 𝑁𝐿 = χ𝐿𝐴𝑓𝑦  ; 𝑀𝑦,𝐿 = χ𝐿𝑊𝑦,𝑒𝑙𝑓𝑦 (11) 

 

and 𝜂𝑦 can be rewritten as: 

 

 𝜂𝑦 =

𝑀𝑦

𝑀𝑦,𝐿
𝑁

𝑁𝐿

 (12) 

 

Fig. 2 shows that the behaviour of a beam-column member on global buckling is comparable to 

the column buckling behaviour with imperfections by using the relative eccentricity 𝜂𝑦. 

 

 
Fig. 2. Equivalence of an imperfection effect in a column (a) and bending effect in a beam-column (b). 

 

In Fig. 2 b) the beam-column behaviour for in-plane bending is represented in terms of normalized 

bending moment my and normalized compression n, i.e.: 

 

 𝑚𝑦 =
𝑀𝑦

𝑀𝐿
 (13) 



 6 

 𝑛 =
𝑁

𝑁𝐿
 (14) 

 

In the same format the normalized applied loads are expressed as: 

 

 𝑚𝑦,𝐸 =
𝑀𝑦,𝐸

𝑀𝐿
 (15) 

 𝑛𝐸 =
𝑁𝐸

𝑁𝐿
 (16) 

 

The green point in the figure represents the intersection of the proportionally amplified load vector 

of length “a” with the linear-elastic cross-section interaction multiplied by χ𝐿. The vector from the 

origin to this point has the length 𝑅𝐿𝑎, where 𝑎 is the length of the vector with components 𝑛𝐸 and 

𝑚𝑦,𝐸. From the definition of ℎ as the projection in the 𝑛 axis of 𝑅𝐿𝑎 it follows: 

 

 ℎ = 𝑅𝐿𝑛𝐸 = 1 − 𝑅𝐿𝑚𝑦,𝐸 (17) 

 

Then, solving this equation for RL yields: 

 

 𝑅𝐿 =
1

𝑛𝐸(1+𝑚𝑦,𝐸/𝑛𝐸)
=

1

𝑛𝐸(1+𝜂𝑦)
 (18) 

 

By defining  𝑐0 = (1 + 𝜂𝑦) in the equation it follows that 

 

 𝑅𝐿 =
1

𝑛𝐸𝑐0
 (19) 

 

In the formulation of the critical load 𝑅𝑐𝑟 of a RHS / SHS member failing in flexural buckling the 

effects of lateral torsional buckling can be neglected. It follows 

 𝑅𝐿 =
𝑁𝑐𝑟

𝑁𝐸
 (20) 

 

The aforementioned relative slenderness 𝜆̅𝑦  is a function of 𝑁𝑐𝑟  and the plastic resistance  

𝑁𝑝𝑙 = 𝐴𝑓𝑦. A new definition of relative slenderness  𝜆̅𝑦
∗
 is introduced as a function of  𝑁𝐿 

 

 𝜆̅𝑦
∗

= √
𝑁𝐿

𝑁𝑐𝑟,𝑦
= √

χ𝐿𝐴𝑓𝑦

𝑁𝑐𝑟,𝑦
 (21) 

 

The GSRM framework provides a more generalised definition of the relative slenderness 𝜆̅𝐺  for 

global buckling: 

 

 𝜆̅𝐺 = √
𝑅𝐿

𝑅𝑐𝑟
 (22) 

 

Where 𝑅𝐿  is the cross-section capacity and 𝑅𝑐𝑟  is the critical load for flexural buckling. 𝑅𝑐𝑟 

includes more than one global buckling mode in y and z direction, but the rules for global buckling 



 7 

are here derived for the in-plane bending case, i.e. the mode referred to as FBy-y (see Fig. 5 for a 

graphic representation). 

𝑅𝑐𝑟 can thus be rewritten as  

 

 𝑅𝑐𝑟 =
𝑁𝑐𝑟

𝑁𝐸
=

𝑁𝑐𝑟
𝑁𝐿

⁄

𝑁𝐸
𝑁𝐿

⁄
=

1

𝑛𝐸𝜆̅𝑦
∗2 (23) 

 

By introducing 𝜆̅𝑦
∗
 in the 𝜆̅𝐺 definition and after few algebraic steps we obtain 

 

 𝜆̅𝐺 =
𝜆̅𝑦

∗

√𝑐0
 (24) 

 

The definition of the global buckling resistance 𝑅𝑏,𝐺  in the GSRM is as follows: 

 

 χ𝐺 =
𝑅𝑏,𝐺

𝑅𝐿
 (25) 

 

Where 𝑅𝑏,𝐺 is the global buckling resistance and 𝑅𝐿 is the cross-section resistance. 

χ𝑦,𝜂𝑦
 is the buckling reduction factor for the axial force (compression) component of the cross-

sectional strength obtained by the Ayrton-Perry formulation, which considers again the non-linear 

elastic second-order load path displayed in Fig. 2 b). 

 

 χ𝑦,𝜂𝑦
=

𝑁𝑏

𝑁𝐿
 (26) 

 

It follows then 

 

 χ𝐺 =
𝑅𝑏,𝐺

𝑅𝐿
= χ𝑦,𝜂𝑦

𝑐0 (27) 

 

The derivation of the global buckling formulae for the GSRM starts with the derivation of χ𝑦,𝜂𝑦
, 

and is similar to the derivation of χ𝑦,𝐸𝐶3 . The limit-state equation in the quadratic format 

substituting 𝐴𝑓𝑦 with 𝑁𝐿 and 𝑊𝑦𝑓𝑦 yields: 

 

 
𝑁𝑏

𝑁𝐿
  +   

(𝑀𝑏
𝐼 +𝑁𝑏𝑒0)

𝑊𝑦𝑓𝑦
  ∙   

1

1−
𝑁𝑏

𝑁𝑐𝑟
⁄

= 1.0 (28) 

 

Where 𝑀𝑦,𝑏
𝐼 = 𝑁𝑏𝜂𝑦 . 

After few algebraic steps and by introducing 𝜆̅𝑦
∗2

 and 𝜂𝑖𝑚𝑝 =
𝑁𝐿𝑒0

𝑀𝑦,𝐿
 

 

 χ𝑦,𝜂𝑦
 + (𝜂𝑖𝑚𝑝 + 𝜂𝑦) ∙

χ𝑦,𝜂𝑦  

1−χ𝑦,𝜂𝑦  𝜆̅𝑦
∗2 = 1.0 (29) 

 

Which is again a quadratic equation with the well-known solution 
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 χ𝑦,𝜂𝑦
=

1

𝛷+√𝛷2−𝜆̅𝑦
∗2

 (30) 

 𝛷 = 0.5 (1 + (𝜂𝑖𝑚𝑝 + 𝜂𝑦) + 𝜆̅𝑦
∗2

) (31) 

 

Substituting the GSRM based variables 𝜆̅𝐺 =
𝜆̅𝑦

∗

√𝑐0
 and χ𝐺 =

𝑅𝑏,𝐺

𝑅𝐿
 we obtain 

 

 χ𝐺 =
1

𝛷𝐺+√𝛷𝐺
2 −𝛽𝐿𝐺𝜆̅𝐺

2
 (32) 

 𝛷𝐺 = 0.5(𝛽𝐿𝐺(1 + 𝜂𝑖𝑚𝑝 + 𝜂𝑦) + 𝜆̅𝐺
2 ) (33) 

 With 𝛽𝐿𝐺 =
1

𝑐0
 (34) 

 

and, once again, a substitution of the original term for 𝜂𝑖𝑚𝑝 with the expression calibrated by 

Rondal & Maquoi for the European column buckling curves 

 

 𝜂𝑖𝑚𝑝 = 𝛼𝐸𝐶3(𝜆̅𝐺√𝑐0 − 0.2) (35) 

 

Thus, 𝛼𝐸𝐶3 is the value according to the EN 1993-1-1 buckling curves. 

An overview of the shape of thus-obtained GSRM global buckling curves is given in Fig. 3, where 

the relative position of the buckling curve decreases with increasing 𝜂𝑦 values. 

 
Fig. 3. In the figure an overview of the global buckling curves varying 𝜂𝑦 is given. 

 

4 Introduction of calibration factors and expansion to bi-axial loading 

The derivation provided so far only accounts for an elastic behaviour, with geometric non-

linearities account for only for as long as they are small, and material non-linearities included only 

partially and with unreliable accuracy, through the chosen cross-sectional resistance surface. In 

particular, the derivation does not include effects caused by the deterioration of stiffness once 

yielding sets on in the outermost fibres. Accordingly, in order to account for the typical effects of 
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the RHS and SHS cross-sections, additional parameters were added in the GSRM framework. This 

is relevant and necessary for all sections that reach a higher cross-sectional capacity than the one 

given by a first-yield criterion, i.e. for all cases where χ𝐿 > 1. Thus, a new term 𝜉𝐿𝐺 was introduced 

to account for the effects of the cross-section in the plastic range ( χ𝐿 > 1 ). It can be interpreted 

as a reduction of the originally valid cross-sectional capacity surface, leading to the use of a new, 

“transition” surface for these cases. The procedure is schematically shown in Fig. 4 for the in-

plane beam-column buckling case. As can be seen in the figure, the linear approximation of the 

cross-sectional resistance (represented by “NL” and “ML”, as well as L) is reduced to a new 

transition surface, so that in the original space the limit for the achievable axial force is now given 

by N/”NL” = 1/𝜉𝐿𝐺.  

 

 
Fig. 4. Representation of the “transitional behavior” for beam-columns with elasto-plastic, stocky sections 

 

The numerical parametric study has shown that it is indeed necessary to account for this effect in 

stocky sections. For the representation of the transition behavior it was chosen to define the term 

𝜉𝐿𝐺 as a linear function of the generalised global slenderness 𝜆̅𝐺, with an additional factor 𝜌 to act 

as a calibration factor for different types of section.  

The chosen format for 𝜉𝐿𝐺 is thus: 

 

 1.0 ≤ 𝜉𝐿𝐺 = 1 + (χ𝐿 − 1)𝜌𝜆̅𝐺 ≤  χ𝐿 (36) 

 

For RHS / SHS, it was found that the effect could be limited to a transition from the plastic range 

to the elastic range; this is represented by limiting 𝜉𝐿𝐺  by χ𝐿. 

With the added term 𝜉𝐿𝐺, the quadratic equation of the Ayrton-Perry derivation is modified as 

follows: 

 𝜉𝐿𝐺𝜒𝑦,𝜂0
 + (𝜂𝑖𝑚𝑝 + 𝜂𝑦) ∙

𝜉𝐿𝐺𝜒𝑦,𝜂0  

1−𝜒𝑦,𝜂0  𝜆̅𝑦
2 = 1.0 (37) 
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Which once again results in the aforementioned solution: 

 

 χ𝐺 =
1

𝛷𝐺+√𝛷𝐺
2 −𝛽𝐿𝐺𝜆̅𝐺

2
     (38) 

 𝛷𝐺 = 0,5 ⋅ (𝛽𝐿𝐺(1 + 𝜂𝑖𝑚𝑝 + 𝜂𝑦) + 𝜆̅𝐺
2 ) (39) 

 

yet with a modified value of 𝛽𝐿𝐺 =
𝜉𝐿𝐺

𝑐0
 

 

An expansion to the spatial loading case, i.e. for compression and bi-axial bending, is possible in 

a very straight-forward manner in the case of hollow-sections, since generally no torsional 

buckling phenomena occur in RHS and SHS beam-columns. In these, two paths of buckling are 

considered as possible buckling modes, corresponding to the two axes of bending, see Fig. 2. The 

“in-plane” case treated in the previous section is one of the two possible paths for flexural buckling 

and is defined as 𝐹𝐵𝑦,𝑦 for bending about the major axis. The equation is only modified to account 

for the simultaneous presence of a weak-axis bending moment. Similarly, the basic equation (i.e. 

the failure criterion) for the out-of-plane buckling case is very similar to the in-plane case, provided 

that the out-of-plane (weak-axis) flexural buckling slenderness is considered. The limit state 

equation is as follows: 

 

 𝜉𝐿𝐺𝜒𝑧,𝜂0
 + (𝜂𝑖𝑚𝑝 + 𝜂𝑧) ∙

𝜉𝐿𝐺𝜒𝑧,𝜂0  

1−𝜒𝑧,𝜂0  𝜆̅𝑧
2 + 𝜉𝐿𝐺𝜂𝑦χ𝑧,𝜂0

= 1.0 (40) 

 

 

 

 

 

 

 
Fig. 5. Spatial case; loading and slenderness definitions (a); limit surfaces and possible load paths (b). 
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5 Examples of the calibration accuracy 

In the following pages, examples are given of the accuracy of the chosen calibration factors for the 

proposed Ayrton-Perry formulation for overall, global buckling of RHS/SHS beam-columns. This 

is first done using the representation of the results in the 𝜆̅𝐺 − χ𝐺  plot. Thereby, the knock-down 

factor is represented by: 

 

 χ𝐺 =
𝑅𝐺𝑀𝑁𝐼𝐴

𝑅𝐸𝐿χ𝐿
 (41) 

 
while the slenderness is given by the following definition, as previously established:  

 

 𝜆̅𝐺 = √
𝑅𝐸𝐿χ𝐿

𝑅𝑐𝑟,𝐺
 (42) 

 

As is illustrated in the following Fig. 6, the behaviour of the GMNIA results is consistently 

described by the GSRM formulation. The left-sided part a) of this figure shows a class 1 SHS 

subjected to in-plane loading, with three different eccentricity levels and a uniform bending 

moment diagram. The points represent the GMNIA results while the curve shows the 

corresponding buckling curve according to the developed and calibrated GSRM. In sub-plot b), 

similar results for a class 3 SHS subjected to in-plane loading are shown. Quite generally, For the 

in-plane case, the combined accuracy of χ𝐺 and χ𝐿 generally leads to quite precise results. The 

conservatism is more pronounced for cold-formed sections, where EC3 imposes 𝛼𝐸𝐶3 = 0.49. 

 

 

 

 
Fig. 6. Comparison of GMNIA results (dots) and calibrated GSRM predictions (continuous lines) for various levels 

of eccentricity and hot-finished SHS with various plate thickness values; a) plate slenderness 𝜆̅p=0.3 (class 1 

section); b) 𝜆̅p=0.6 (class 3 section) 
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Through calibration and the selection of satisfactorily safe and accurate strength predictions, the 

following values of 𝜌 were selected: 

 𝜌 = 0.6 for hot-finished section 

 𝜌 = 0.5 cold-formed sections 

The calibration of the GSRM parameters also produced accurate and satisfactorily safe-sided 

results for RHS, both for the in-plane and out-of-plane cases. A few exemplary cases are illustrated 

in Fig. 7. In sub-plot b), the effect of the local buckling conservatism is eliminated from the 

representation by using a slightly different format of χ𝐺: 

 

 χ𝐺 =
𝑅𝐺𝑀𝑁𝐼𝐴

𝑅𝐺𝑀𝑁𝐼𝐴,𝑆𝐻𝑂𝑅𝑇
 (43) 

 

In this case, the value of the each GMNIA result is divided by the value of the shortest member of 

the corresponding load case, and it can be noticed that the rather high conservatism of the GSRM 

predictions of the value in the global case of Fig. 7 a) is mostly due to the predicted value of the 

cross-section capacity, which happens to be quite conservative (by around 20%) for this particular 

cross-section. 

 

 

 
Fig. 7. Class 3-4 RHS subjected to biaxial bending. In a) the traditional representation of the GMNIA results in the 

GSRM format is shown; b) shows the results without the effects of the cross-section conservatism of χ𝐿. 

 

 

Finally, the last parameter that needed to be introduced for a more general implementation of the 

method accounts for the cases where the bending moment is not constant along the member length. 

In the extensive parametric study several combinations of the bending moment diagrams along the 

member length were applied, and a bending moment factor Cm was introduced, in correspondence 

with the common use in Eurocode 3. This is shown by example in the following.  

In Fig. 8a), the GMNIA results for the application of an exemplary non-constant, linear bending 

moment diagram are plotted in the GSRM format. In an attempt to diverge as little as possible 
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from established EC3 design rules, the existing formulae and tables for Cm were adapted, leading 

to the use of 𝐶𝑚,𝑦 = 0.6 for this particular case. A schematic overview of the resulting accuracy 

for an SHS section and various levels of bending is given in the figure. Fig. 8 b) contains the 

proposed values for some simple bending moment cases.  

 

 

 

 

 
Fig. 8. In a) class 1 SHS subjected to in-plane linear bending moment over the length; in b) an overview of the 

evaluated applied bending moment and a schematic representation of the ψM factor. 

 

Thus, the final version of the global buckling calibrated formulation includes coefficients 𝐶𝑚,𝑦 and 

𝐶𝑚,𝑧 to account for the effects of the different bending moment diagrams in both directions. They 

enter the formulae by directly reducing the maximum value of the bending moment along the 

member. Thus, the parameters 𝐶𝑚,𝑦 and 𝐶𝑚,𝑧 are multiplied respectively to 𝜂𝑦 and 𝜂𝑧. 

 

 

6 Overall validation against GMNIA results and comparison with AISC and Eurocode 3 

An overview of the results of the parametric study is necessary in order to validate the GSRM 

formulation with respect to accuracy and safety, as well as to compare the efficiency of the method 

with the current design standard. Thereby, the GSRM rules, which were calibrated against the data 

pool of the extensive parametric study, are now validated against the EC3 and AISC design values. 

A much larger set of points is used in the following, representative results, which will be grouped 

for members of equal flexural buckling slenderness 𝜆̅𝑧, where: 

 

 𝜆̅𝑧 = √
𝐴𝑓𝑦

𝑁𝑐𝑟,𝑧
 (44) 

 

The chosen representation format is the so-called box plot format, which allows a graphical 

evaluation of the statistical parameters in the plot. A box in red color is used to represent the area 
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that contains 50% of the data for a certain slenderness, while the whiskers show the 5% upper and 

lower bound of the data, and the “outliers” beyond this range are shown as small black points. Fig. 

9 shows predicted values from numerical simulations with constant bending moment along the 

member length and compression, uni- and biaxial bending. In Fig. 9 a) and b), the results of the 

GMNIA numerical campaign on global buckling are normalized by the strength prediction of the 

new GSRM formulation. The corresponding scatter bands are shown for a) hot-finished steel 

sections (EN10210) and b) cold-formed steel sections (EN10219). The scatter is higher for cold-

formed sections, reaching consistently about the same resistance of the GSRM prediction with the 

5% lower bound and 25% higher results with the 5% upper bound. Hot-finished sections instead 

behave differently on the upper bound of the result distribution, with a maximum of 20% of higher 

resistance for 𝜆̅𝑧=1,2. in Fig. 9 c) and d) gives a representation similar to a) and b); each GMNIA 

simulation is divided respectively by the EC3 and AISC design value.  

 

In general, the GMNIA results are fairly above the EC3 predictions except few points located in 

low slenderness rang, where also the effect of the cross-section capacity is higher and the 

prediction of the Eurocode could be occasionally unsafe (e.g. Toffolon and Taras 2019b). In Fig. 

9 d) the GMNIA results are divided against the AISC design values. The scatter of the values is 

higher that the Eurocode, and this is more noticeable for high slendernesses. The predictions for 

𝜆̅𝑧=1,0-1,5 lie well below the average GMNIA value, in some cases with a median AISC design 

value more than 10% lower than the GMNIA. In Fig. 9 e) and f) show equivalent results by 

comparing directly the AISC design rules with the Eurocode and the GSRM. In the comparison, 

the predictions of the AISC are on average 20% higher than the corresponding values from the 

European standard, and still 13% higher compared to the GSRM predicted values. As shown in 

Toffolon and Taras 2019b, the safety factor proposed for the GSRM method is 1.0, while the AISC 

rules would require a lowering of all values by LRFD resistance factors, thus bringing down the 

average design resistances to the level of the GSRM predictions.  

 

For an overview of the mean values and standard deviation of the proposed comparisons, see Table 

2. 

 
Table 2. Statistical evaluation of the parametric study on global buckling. 

Plot  Mean Standard deviation 

   

Fig. 9 a 1.067 0.051 

Fig. 9 b 1.092 0.074 

Fig. 9 c 1.157 0.103 

Fig. 9 d 0.968 0.134 

Fig. 9 e 1.201 0.135 

Fig. 9 f 1.131 0.127 
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Fig. 9. Comparison of results through box plots; a) and b): GMNIA vs. GSRM, hot-finished and cold-formed steel; 

c) GMNIA vs. EC3 rules; d) GMNIA vs. AISC rules; e) and f): AISC vs. EC3 and AISC vs. GSRM rules. 
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7 Summary and Conclusions 

This paper describes and provides the background to a new design method for the determination 

of the strength of SHS and RHS beam-column members made of mild or high-strength steel and 

loaded by any combination of axial (compressive) forces and bending moments about one or both 

principal axes of rotation. The new method, termed the Generalized Slenderness-based Resistance 

Method (GSRM), makes use of a generalization of the slenderness values at a local and global 

level, which are commonly determined with the aid of dedicated numerical tools. When applied to 

beam-columns, the GSRM calculates - in a first step - the design value for the cross-section 

resistance and applies – in a second step -  an Ayrton-Perry-type formulation for the design of 

members. Thereby, the generalized slenderness and the cross-section resistance are the main 

inputs. This formulation for beam-columns was calibrated against a large pool of numerical results, 

accounting not only for the second order effects at a global level, but also for the spread of 

plasticity for stocky cross-sections and general load cases (combined compression and biaxial 

bending). These results expand the GSRM rules for the cross-section resistance developed during 

the HOLLOSSTAB project and may be applied to various types and shapes of hollow sections. In 

this paper, the results of the GSR method are compared with well-known American and the 

European code predictions for the cross-section resistance, demonstrating significant 

improvements in consistency, safety and cross-section strength. In addition, the research project 

HOLLOSSTAB also led to the development of a second, strain-based (CSM) approach (Meng et 

al. 2019) for the design of stockier cross-sections as well as the GSRM design rules for the global 

buckling of members. The full mechanical background to development of GSRM formulations for 

the design of members can be found in Taras et al. (2019) and is in the process of publication in 

journal papers. 
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