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Abstract 

Effective torsional bracing for stability must satisfy both stiffness and strength requirements. The 

design philosophy for most stability bracing is to provide twice the “ideal” stiffness that often 

limits the member deformation to a value equal to the initial imperfection. For beam torsional 

bracing, computational studies have shown that the current AISC Appendix 6 provisions for 

stiffness do not meet this requirement. This paper outlines the results of a detailed numerical 

parametric study on the stiffness requirements for stability bracing to control the corresponding 

strength requirements. Previous research work has outlined the necessary “ideal” stiffness; 

however, some of the work has focused on single I-girders and the applicability of the developed 

design criteria has not been validated for multi-girder systems. Therefore, a numerical research 

program was executed to investigate the stiffness requirement of multi-girder systems. The 

results of the investigation highlight that the calculation method of the ideal stiffness related to 

single I-girders and multi-girder bridges are different and the application of design equations 

developed for single I-girders can lead to significant overestimation of the required ideal 

stiffness for twin or multi-girder bridges. However, the increment on the ideal stiffness to control 

deformations is often larger than twice the ideal stiffness. The paper presents result from the 

parametric studies and introduces improved design equations for the determination of the 

stiffness requirements to control brace forces and out-of-plane deformations. 

 

1. Introduction 

Torsional bracing is aimed to prevent twisting of the cross-section and improve lateral-torsional 

buckling (LTB) strength of steel I-girders (Fig. 1). Bridge girders with torsional bracing are 

usually designed assuming that buckling length is equal by the distance between the brace points. 

To ensure this assumption the bracing system should have enough stiffness and strength. 

Therefore, stability bracings have to fulfill both stiffness and strength requirements, which 

accurate determination is the topic of the current paper. The stiffness requirement has two issues: 

(i) to reach the critical moment level regarding fully braced girder (e.g. buckling length equal by 

the distance between the brace points) and (ii) to eliminate excessive torsion (or out-of-plane 

deformation) of the girders coming from geometric imperfections. The current research focuses 

on the stiffness requirement of torsional bracing and has the aim (i) to determine the required 
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ideal stiffness of torsional bracing system, and (ii) to determine how many times the ideal 

stiffness is required to eliminate excessive out-of-plane deformation.  

 

     
 

Figure 1: Example for torsional bracing (cross frame) and conversion its mechanical model to single I-girder. 

 

The current AISC Specification (2010) recommends to calculate the required stiffness of 

torsional bracing by Eq. 1. 
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where βT,req is the total system torsional stiffness; L is the span length; Mr and n are the 

maximum factored moment and the number of intermediate bracing within the span; Iy is the 

effective out-of-plane moment of inertia of the I-girder; Φ is the resistance factor; Cb is the 

moment gradient factor; E is the Young’s modulus of steel. This equation has been developed for 

design purposes to use double ideal stiffness in the design praxis to reduce brace forces and twist 

of the cross-section under construction. The theoretically derived ideal stiffness has been also 

multiplied by 1,2 considering top flange loading according to the investigations of Yura (2001).  

 

Previous research results of Nguyen et al. (2010, 2012) highlighted that application of continous 

bracing theory can lead to significant differences compared to the required torsional stiffness of 

discrete braces. Numerical investigations proved that the current AISC Specification sometimes 

overestimates, sometimes underestimates the required ideal stiffness. Usual overestimation has 

been found for n=1 case (one mid-span bracing) and significant underestimation has been found 

for n≥3 cases (more than 3 bracings within one span). Due to criticism of the current AISC 

Specification a numerical research program has been conducted to investigate the differences 

between the continous and discrete bracings and their application in design equations. It is also 

observed, that all the previous investigations were focusing on single I-girders supported by 

torsional springs and its applicability has been checked for twin girders only for several cases. 

However, bracings in real bridges connect two or multiple girders which interaction can have 

significant effect on the structural behaviour and on the required torsional stiffness, which has 

not been investigated in the past studies. There are numerous previous investigations available in 

the international literature to determine the rotational stiffness of multi-girder bridges (βTb). It is 

known from international literature (Yura 2001; Helwig and Yura 2015) that there are three 

primary components of torsional bracing system stiffness that can have substantial impact on the 

structural behaviour: (i) brace stiffness (βb), (ii) cross-sectional distortion (βsec), and (iii) in-plane 

stiffness of the girders (βg). The total torsional bracing system stiffness (βTb) can be calculated 

based on the stiffness of these three components according to Eq. 2.  
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However, how does relate the total torsional bracing system stiffness (βTb) to the ideal stiffness 

(βT,req) needs more investigation. Authors realized that the stiffness requirement to avoid 

excessive torsion needs also revision, because its applicability is mainly proved for column 

buckling case and its validation is missing for lateral torsional buckling. Therefore, a large 

numerical parametric study is executed investigating the stiffness requirements of torsional 

bracings. Results on the numerical calculations are summarized in the current paper. The 

examined research program contains the followings main parts:  

- comparison of structural behaviour of girders with continuous and discrete torsional 

supports and comparison to analytical solutions, 

- numerical parametric study to investigate the critical moment of single I-girders and multi-

girder bridges and to determine the required ideal stiffness, 

- study and evaluation of the applicability of ideal stiffness calculation method for multi-

girder bridges, their specialties are highlighted and design guidelines are proposed, 

- determination how many times the ideal stiffness is necessary to eliminate excessive out-

of-plane deformations. 

 

2. Literature review 

At first Taylor and Ojalvo (1966) investigated the effect of torsional bracing on the critical load 

amplifier and developed the exact solution for the critical moment of continuously elastically 

supported I-girders in form of Eq. 3.  
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where Mcr,0 is the critical moment of the girder without torsional springs, Iy is the out-of-plane 

second moment of area of the entire section and βT,cont is the specific stiffness of the continuous 

torsional springs. The accuracy of this equation has been proved by many researchers in the past 

and it has been proposed to be used for discrete springs as well by Yura (2001) in form of Eq. 4. 

This equation has been implemented in the ASCI Specification (2010) in a simplified form.  
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Numerous another studies have been carried out on LTB of beams with discrete torsional 

bracing. Trahair (1993) developed an approximate equation for stiffness requirement of beams 

with mid-span torsional restraint (n=1 case). Valentino and Trahair (1998) performed 

investigations for beams with mid-span torsional bracing under various loading conditions. 

Valentino and Trahair (1998) studied the effects of mid-span torsional restraints on inelastic 

buckling by using the approximate solution proposed by Trahair (1966). Mutton and Trahair 

(1973), Nethercot (1973), Medland (1980), Tong and Chen (1988) have also studied the effect of 

torsional bracing on LTB strength of beams subjected by various loading conditions. However, 

almost all their studies are limited to mid-span torsional bracing problems. Significant research 

program has been performed by Nguyen et al. (2010, 2012) investigating the torsional stiffness 

requirement of discrete torsional bracing focusing on larger brace numbers (n≥1). Nguyen et al. 

(2010) proposed a design equation for the required torsional stiffness for discrete bracings, which 

follows the results of the numerical calculations for uniform bending moment. The applicability 

of the developed design equation has been extended by Nguyen et al. (2012) for uniformly 

distributed load as well. Mohammadi et al. (2016) also proved the results of Nguyen et al. and 

extended the design proposal to monosymmetric I-girders. 
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Previous research works made on twin-girder systems focused mainly on the global system 

buckling mode, as presented by Yura et al. (2008) and Han and Helwig (2019). It is important to 

separate the torsional stiffness requirement from the system buckling mode, because torsional 

braces are not effective to prevent global buckling. Similar works on inelastic buckling of 

torsionally braced I-girders under uniform bending has been made by Park et al. (2010) and Choi 

et al. (2010). They investigated multi-girder bridges using cross-beams, which structural 

behaviour and stiffness requirement is different from the requirements of cross-frames due to 

sensitivity for section distortion. However, one of the main conclusion of Park et al. (2010) was 

that the design equation proposed by Choi et al. (2010) gives the best proposal for the required 

stiffness of the cross-beam using L/n+1 instead of the previously proposed L/n ratio. Based on 

the literature survey the following conclusions are drawn:  

- stiffness requirements developed for continuous elastic supports cannot be used for discrete 

bracings without modifications,  

- previous studies highlighted that the current AISC Specification is on the safe side for n=1 

and n=2 cases, however, unsafe for n≥3 cases, which seems to contradict to the fact that 

n≈∞ case should be the closest to the analytical solution using continuous spring theory,  

- stiffness requirements developed for single I-girders with discrete torsional springs cannot 

be applied for multi-girder bridges without modifications.  

 

The aim of the current research program is to clarify the above mentioned contradictions, 

investigate the differences between continuous and discrete torsional bracings, single and multi-

girder bridges and to develop simplified design equation for stiffness requirement. 

 

3. Applied numerical models 

 

3.1 Geometry and support conditions 

Two individual, but identical numerical models are developed using FE program ANSYS and 

ABAQUS to determine the critical buckling moment of girder systems with different torsional 

bracing, to determine the ideal stiffness and the non-linear cross-sectional rotation during 

loading. The numerical models consisted of four-node shell elements for upper and lower 

flanges, and web plate. The general layout of the numerical model and the applied boundary 

conditions are presented in Fig. 2. Reasonable sized transverse stiffeners are also applied in the 

numerical model in the braced cross-sections to avoid section distortion. 

 

Girders (S4)

Uz = 0
Uy = 0

(One end)

Ux = 0

x

z

Ux = 0

Cross frame 

(T3D2)

(a) Twin-girder system with a single brace (b) Four-girder system with three braces

bf/d = 1/6 bf/d = 1/4

 
Figure 2: Parametric numerical model. 
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Parametric model is developed containing at least 1, maximum 6 main girders. Three loading 

conditions are applied and studied in the numerical parametric study as shown in Fig. 4:  

(i) uniform bending moment applied at the two end cross-sections, (ii) uniformly distributed load 

acting in the centre of gravity of the cross-section, and (iii) uniformly distributed load acting at 

the top flange. The bracing system is modelled using beam elements having pinned connections 

at the web-to-flange junctions. Applied support conditions refer to the simply supported single-

span girders having fork-support conditions at the end cross-sections. The middle of each cross-

section is vertically and laterally supported, the middle node of the upper and lower flanges in 

the end cross-sections are laterally supported. The system is longitudinally supported at midspan 

in the middle point of the web. The first aim of the numerical modelling is to determine the 

critical buckling moment related to system buckling for various girder geometries with different 

torsional bracing. In the numerical parametric study for each analyzed girder geometry the cross-

sectional area of the bracing system is increased to increase the critical moment level. Critical 

moment is determined using bifurcation analyses using linear elastic material model with a 

Young’s modulus equal to 30000 ksi (210000 MPa). Following the eigenvalue analyses, 

geometrically non-linear analyses with elastic material model and initial geometric imperfections 

is carried out. The applied imperfection shape is presented in Fig. 3, magnitude is equal to 

Lb/500. Wang and Helwig (2005) demonstrated that the critical shape of the initial imperfection 

for lateral-torsional buckling of beams consists of a lateral sweep of the compression flange 

while the tension flange remains straight. Figure 3 shows the asymmetric initial imperfection 

shape applied on the top flanges by displacing selected nodes laterally before the load 

application. The brace members were activated after applying the initial imperfection so that no 

forces were induced in the braces before the loading. Based on the non-linear analysis the load - 

out-of-plane deformation diagram of the girder system is determined. Maximum out-of-plane 

deformation and accompanying internal force in the bracing system is determined and their 

values at the target bending moment level are evaluated and discussed.  

    

Figure 3: Initial imperfection shape used in the non-linear analysis. 

 

3.2 Investigated geometrical parameters 

Table 1 summarizes the applied parameters used for the bifurcation analysis. Total of 255 

different girder geometries (different cross-sections and brace number or bracing lengths) are 

investigated in the numerical parametric study. For each analyzed girder the torsional spring 
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stiffness is increased from 0 to reach the required critical moment level (parameter is varied 

between 0 - 2 times the required ideal stiffness).  

Table 1: Investigated parameters and applied values in eigenvalue analysis. 

parameter applied values 

hw – web depth 2.6 – 3.3 – 3.9 – 4.6 – 4.9 – 5.9 – 6.5 [ft] 

tw – web thickness 0.6 – 0.8 – 1.0 – 1.2 [in]  

bf – flange width 7.9 – 9.8 – 11.8 – 13.8 – 15.7 [in] 

tf – flange thickness 0.8 – 1.0 – 1.2 – 1.4 – 1.6 [in] 

L/(n+1) – unbraced length 10 – 11.5 – 13 – 16.5 – 20 – 33 [ft] 

n – number of stiffeners 2 – 3 – 4 – 5 – 6  

L – total length (span) 33 – 100 [ft] (different values depending on L/(n+1) and n) 

 

In the non-linear analysis three prismatic cross-sections with the flange widths of 8 in., 12 in. and 

16 in. are considered, as presented in Fig. 4. The thicknesses of the flanges are selected to 

provide a width/thickness ratio of 8, which is compact for the commonly used grade 50 steel and 

therefore avoided local flange buckling. The flange sizes of the three sections provided flange-

width-to-depth ratios of 1/6, 1/4, and 1/3. The web thickness was chosen as 0.75 in. (19.05 mm) 

to maintain a relatively stocky web and avoid local buckling. The span of the girders was 100 ft., 

and the number of intermediate braces provided between the adjacent girders is 1, 3 and 5, as 

shown in Fig. 4. The corresponding unbraced lengths ranged from 50 ft. to 16.67 ft. To avoid 

issues with system buckling, the girder spacing ranged from 20 ft. to 30 ft. for the analyses 

investigating twin girder systems. This spacing was required for cases with five intermediate 

braces to prevent the buckling capacity from being controlled by the system buckling mode.  

 

8"×0.5"

12"×0.75"

16"×1"

0.75"

48"

Cross-section 1

0.75"

48"

0.75"

48"

Cross-section 2

Cross-section 3

Uniform moment loading, n=1

Distributed loading at top flange, n=3

Distributed loading at mid-height, n=5

Cross frame

I-girder

 

Figure 4: Initial imperfection shape used in the non-linear analysis. 
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3.3 Verification of the numerical model 

Sensitivity analysis is conducted on two girders having the smallest and largest web depths 

(flange sizes as well) and the applicable element size is determined to ensure high accuracy. The 

result of the mesh sensitivity study proved that finite element size of 1/16 of the web depth 

results in accurate critical moments compared to analytical solutions and LTBeam results. 

Therefore, this finite element size has been used in the further studies for larger girder depths as 

well. After the sensitivity study the numerical model is validated by comparison of critical 

moment extreme values for each analyzed geometries with LTBeam and by hand calculation. It 

means that the numerical model is validated for each analyzed girder geometries for extreme 

values and the only running parameter for each girder is the stiffness of torsional bracing. For the 

extreme values the average difference between the numerical and reference model showed in 

average 1,5% difference. Therefore, the applied numerical model is considered to be verified. 

 

4. Investigations on the ideal stiffness  

 

4.1 Comparison of discrete and continuous spring supports 

At first the structural behaviour of I-girders supported by discrete or continuous springs is 

investigated and compared. For all investigated girder geometries the spring stiffness is increased 

and the critical moment is determined. Results of the numerical calculations are plotted on Mcr-β 

diagrams. Three demonstrative examples are presented in Fig. 5 representing n=1, n=3 and n=5 

cases loaded by uniform bending moment. Each diagram shows three calculation results, the 

dashed line presents the numerical calculations related to discrete springs, the orange line 

represents the results of a numerical model with continuous spring supports and the grey line 

shows analytical results using Eq. 3.  
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Figure 5: Differences in structural behavior between continuous and discrete springs. 

The results proves the theoretical solution given by Eq. (3) gives extremely good agreement with 

the results of the numerical model using continuous springs. The behavior of the model using 

discrete springs significantly differs from the results using continuous springs, which proves that 

the efficiency of discrete and continuous springs is different. The theoretical solution using 

continuous spring theory gives the best approximation to the required ideal stiffness based on 

discrete spring model by n=1; the initial part of the diagrams show the best fit between the 

models using discrete and continuous spring by increasing the number of cross frames (n), which 

shows that by increasing the number of springs the structural behaviour of the model with 

discrete springs is getting closer to the analytical solution using continuous spring theory (which 

fits to the expectations). However, the efficiency of discrete springs are smaller by increasing 

their stiffness, therefore, larger ideal stiffness is needed using discrete springs than continuous 

springs. 
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4.2 Effect of total girder length and unbraced length (L or L/(n+1)) 

Because the efficiency of continuous and discrete springs is different, number of springs has an 

important role in the torsional stiffness requirement. Results of the numerical calculations show 

the required stiffness is not related to the number of springs, but related to the L/(n+1) ratio, 

representing the unbraced length. Figure 6 presents the results of numerical calculations and the 

analytical solution calculated by Eq. 4 using girders having constant total length (L), but different 

number of springs (n). Results prove that by increasing number of springs, critical moment 

increases and the required torsional stiffness increases as well. However, comparing the required 

values with the analytical solution it can be observed that the difference between analytical and 

numerical values is smaller for smaller spring numbers. This ratio increases by increasing 

number of braces and the analytical solution tends to be unsafe. However, if results are evaluated 

by keeping the unbraced length constant, as shown in Fig. 7, the required torsional stiffness does 

not change. It proves that the ideal stiffness should be not related to the numbers of torsional 

bracing, but to the unbraced length (which is apparently in relation with the brace number in case 

of practical cases, where the span is a given value and the number of bracing is a design 

parameter). It means that in the ideal stiffness equation L/(n+1) should be used to determine the 

required ideal stiffness instead of the currently used L/n ratio.  

 

 

Figure 6: Numerical results for different number of spring with constant total length (L).  
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Figure 7: Numerical results for different number of spring with constant unbraced length.  

Results also show, that the closest value to the numerical calculations is found for n=1 case, 

where the above mentioned change would halve the calculated ideal stiffness. Therefore, the 
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required ideal stiffness has to be multiplied by 2, as given by Eq. 5. This modification leads to 

identical ideal stiffness values with the current specifications for n=1, but it could lead to 

significant differences for n>1 cases. Therefore, the design equation needs further improvement, 

another modification factor (Nmod,twin) considering the cross-section properties, number of 

torsional bracings, girder spacing and calculation method of the total torsional bracing system 

stiffness (βTb). Calibration of this modification factor is the task of the ongoing research work of 

the authors.   
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4.3 Effect of girder number (ng) on ideal stiffness 

Numerical parametric study is also executed to check the effect of girder number (ng) on the 

ideal stiffness. The typical Mcr-βTb diagrams are determined and compared for all analyzed girder 

systems. All Mcr-βTb curves are evaluated using the analytical equations given by Eq. 2. One 

representative example (n=1 case) is presented in Fig. 8, showing that there is a significant 

difference in the ideal stiffness depending on the number of girders. If ng increases, the ideal 

stiffness decreases. The results show that twin-girder system approximates the ideal stiffness of 

single I-girder and the largest change is observed between ng =2 and ng =3. Results also means, 

that ideal stiffness developed for single I-girders or twin girders can conservatively be applied 

for multi-girder systems. However, an adjustment factor is necessary for multi-girder systems to 

ensure economic design.  
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Figure 8: Comparison of Mcr-βTb diagrams – based on analytically calculated βTb.  

 

To calibrate this modification factor similar diagrams as presented in Fig. 8 are produced and 

evaluated for all analyzed girder geometries. The ratio of ideal stiffness values calculated for 

twin and multi-girders are determined and presented in Fig. 9. Graph shows that the calculated 

values do not show large scatter and there is a clear trend between the obtained ideal stiffness 

and girder numbers. Based on the executed numerical calculations modification factor is 

developed for the ideal stiffness given by Eq. 6 presented by red line in Fig. 9. 
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Figure 9: Ideal stiffness reduction factor depending on ng.  

 

The modification factor can be applied together with all ideal stiffness calculation methods, 

because it follows the trend of the numerical simulations and it is derived based on the 

comparison of twin and multi-girder systems. The proposed equation keeps the accuracy of the 

ideal stiffness calculation method developed for twin-girders and makes it applicable for multi-

girder systems ensuring the same accuracy.  

 45,0
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The above presented results are related to analytically calculated βTb values and verified for n=1 

and n=3 cases. Further numerical investigations are needed to prove the accuracy of this equation 

for larger n values and using various cross-sections. 

 

5. Investigations on the cross-section rotation 

 

After determination of the ideal stiffness non-linear analysis are executed to determine the out-

of-plane deformation of the braced cross section using imperfect numerical model and 

geometrically nonlinear calculation. Figure 10 shows graphs on the normalized bending moment 

versus the corresponding relative twists for the cases with the bracing stiffness ranging from two 

to four times the ideal stiffness (βT,ideal). The applied moment for a single girder is the average 

moment among the girder systems and is normalized by the critical buckling moment. In the 

graphs, βi and Mcr are obtained from the eigenvalue analyses; θ0 is the cross-sectional twist 

induced by the initial imperfection. It can be observed the relative twists at Mcr or the maximum 

applied moment level are always higher than 2. It means the results showed in the figures are 

against the assumption that the cross-sectional twist equals to the initial imperfection by 

providing twice the ideal stiffness. By employing higher bracing stiffness, the slopes of the 

curves increase, and the relative twist at the limit state effectively decrease. Figure 10(a), (b) and 

(c) show the effect of the number of bracing on the stiffness requirement for torsional bracing by 

the cases with cross-section #2. The cross-sectional twists decrease by introducing more bracing. 

Figure 10(b), (d) and (e) compare the cases with three braces and different cross-sections. The 

results show that the twist occurs for cross-section #2 is lower than for cross-section #1 and #3. 

Figure 10(b) and (f) present the results of the cases under top flange loading and mid-height 
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loading with three braces. In these cases, the transverse loading locations have a negligible 

impact on the sectional twist. Results of the numerical calculations show that by providing twice 

the ideal stiffness which agrees with the current assumption, the relative twists are always larger 

than 2. However, the sectional twist can be reduced to around the initial imperfection by using 

the braces with three times the ideal stiffness. 
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 (c) n=5, Sec.2, top flange loading (d) n=3, Sec.1, top flange loading 
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 (e) n=3, Sec.3, top flange loading (f) n=3, Sec.2, mid-height loading  

Figure 10: Computed moment – rotation curves. 
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6. Conclusions 

Numerical research program is executed to investigate the strength and stiffness requirement of 

torsional bracing systems. Based on the executed numerical calculations and theoretical 

considerations the following conclusions are drawn:  

- effectiveness of discrete torsional springs is different from continuous spring, therefore the 

design equations using continuous spring theory should be modified,  

- the required ideal stiffness is independent from the number of brace numbers, it depends on 

the unbraced length; therefore, L/(n+1) should be used in the ideal stiffness calculation 

instead of L/n ratio, 

- increasing the girder number (ng) leads significant reduction of ideal stiffness; twin-girders 

require the largest ideal stiffness; reduction factor is to be applied for multi-girder bridges, 

- twist can be reduced to around the initial imperfection by using three times ideal stiffness. 
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