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Abstract 
The elastic buckling and post-buckling strength of steel decks in bending are examined 
computationally via finite element modeling. Nonlinear finite element models of steel deck were 
created in ANSYS and successfully validated against published experimental results. A parametric 
study comprising 472 simulations was conducted using the developed models to examine the 
influence of the deck cross-sectional geometry and thickness, boundary conditions, and transverse 
ties on the deck elastic buckling and post-buckling strength. The influence of the deck yield stress 
and steel constitutive models on the deck flexural strength was also investigated. The obtained 
local and distortional elastic buckling moments, as well as the ultimate moments for decks failing 
in local and distortional buckling, are discussed. It was found, in particular, that the post-buckling 
flexural strength of deck with flat compression flanges failing in local buckling is highly affected 
by the level of deck non-symmetry, in addition to the deck compression flange slenderness. The 
deck ultimate moments obtained in the parametric study are compared with those predicted by the 
AISI S100-16 direct strength and effective width methods. Design equations are proposed for 
predicting local elastic buckling coefficients of deck with flat compression flanges and distortional 
buckling coefficients of deck with intermediate stiffeners in compression flanges. Modifications 
of the direct strength method are proposed for better predictions of the flexural strength of deck 
with flat compression flanges failing in local and distortional buckling. The proposed equation 
predictions agree well with the numerical simulation results.  
 
1. Introduction 
The Direct Strength Method (DSM) has been developed during the last twenty years (Schafer 
2019) and is currently adopted in the North American Specifications for the Design of Cold-
Formed Steel Structural Members (AISI S100-16) and in the Australian/New Zealand Standard 
for the design of cold-formed steel structures (AS/NZS 4600:2018). In contrast to the traditional 
Effective Width Method (EWM), DSM considers interaction of the member cross-section 
elements, such as webs and flanges. DSM offers advantages, especially for members that have 
their strength governed by distortional buckling and members with cross-sections optimized by 
longitudinal stiffeners of different shapes and sizes in webs and flanges (Schafer 2008). 
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Being an efficient method for many modern optimized sections, DSM was shown to be overly 
conservative for cross-sections with a very slender element in compression, such as steel deck and 
hat sections (Schafer and Peköz 1998, Schafer 2008). As the element slenderness increases, the 
elastic critical buckling stress of the slender element and the entire member decreases. DSM 
assumes that the ultimate strength of the entire member decreases with a decrease in the elastic 
critical buckling stress of the member. EWM, in contrast, assumes that the slender element only, 
not the entire section, has a reduced strength (Schafer 2008).  
 
The DSM expression for local buckling of flexural members in AISI S100-16 was selected based 
on the analysis of a relatively large experimental database (Schafer and Peköz 1998), which in 
particular included flexural test results of trapezoidal decks without and with longitudinal 
intermediate stiffeners reported by Höglund (1980) and Bernard, Bridge, and Hancock (1993). The 
profiles with flat compression flanges in the database had the ratios of tension flange width to 
compression flange width of approximately 0.6 and 1.8 and the ratios of deck height to 
compression flange width of 0.8 and 0.6. 
 
The experimental database also comprised hat sections without and with longitudinal intermediate 
stiffeners, including Winter test specimens of hat sections with a very slender compression flange 
and relatively narrow unstiffened tension flanges (Schafer and Peköz 1998). The DSM formula of 
AISI S100-16 considerably underestimated the moment capacity of those specimens. Schafer and 
Peköz (1998) reported that DSM conservatively predicted moment capacities of specimens with 
low ratios of height to compression flange width and tension flange width to compression flange 
width. Increases in the above-mentioned ratios resulted in less conservative predictions of the 
moment capacities. Overly conservative strength predictions were not observed for the deck 
sections with flat compression flanges probably because the above-mentioned ratios of the decks 
in the experimental database were not low enough to result in considerable discrepancies between 
the tests and the calculations.  
 
The DSM expression for distortional buckling of flexural members in AISI S100-16 showed a 
good agreement with test results for trapezoidal decks with longitudinal intermediate stiffeners in 
the compression flanges that exhibited distortional buckling prior to failure (Bernard, Bridge, and 
Hancock 1993).   
 
The literature review revealed very limited information about the elastic buckling and post-
buckling strength of cold-formed steel (CFS) deck profiles in bending, especially the deck profiles 
commonly used in the US. As was previously mentioned, the DSM design provisions in AISI 
S100-16 were calibrated using results of physical tests conducted on European and Australian deck 
profiles, which are different from the US profiles. Recent studies on applicability of DSM to the 
US steel deck profiles confirmed that DSM underestimates moment capacity of decks with slender 
flat compression flanges (Dudenbostel and Sputo 2016, Raebel and Gwozdz 2018).  
 
Finite element (FE) simulations of elastic buckling and collapse behavior of CFS steel members 
may be a good and efficient alternative to expensive and time consuming physical testing when 
FE models used in the simulations were appropriately built, calibrated, and validated using 
available test results (Schafer, Li, and Moen 2010). This paper presents results of a pilot numerical 
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study of CFS deck in bending performed using nonlinear FE deck models developed in ANSYS 
and validated using available test data.  
 
Trapezoidal deck profiles with different heights and thicknesses commonly used in the US were 
studied. Compression flanges of the profiles were either flat or had longitudinal intermediate 
stiffeners of different sizes. The effects of boundary conditions on the critical elastic buckling 
moment and the ultimate flexural strength of the decks were studied, as well as the effects of yield 
stress and steel material models on the deck ultimate flexural strength. The deck elastic buckling 
and ultimate moments obtained in this study were compared with those calculated in accordance 
with the DSM and EWM equations given in AISI S100-16. The results of the parametric study 
were used as a basis for the formulation of new design equations for predicting local elastic 
buckling coefficients of the deck compression flanges and for improving modifications of DSM 
for deck with flat compression flanges failing in local and distortional buckling. The main 
objectives of this study were to get a better understanding of the deck flexural behavior and to 
explore possibilities for improvement of the existing DSM equations for steel deck.  
 
2. Development and validation of finite element models 
FE deck models were developed, calibrated, and validated using steel deck profiles shown in Fig. 
1. These profiles were physically tested at the Karlsruhe Institute of Technology (KIT) for the 
GRISPE research project (Fauth 2015). In the project, 14 non-perforated single-sheet, single-span 
deck panels spanning 3300 mm were tested in six-point bending, which simulated a uniformly 
distributed load, in accordance with EN 1993-1-3:2006. The deck had a nominal thickness of 0.75 
and 1.00 mm and a nominal yield stress of 320 MPa. To prevent deck web crippling failures, the 
load was applied to the deck bottom flanges via timber blocks, while support reactions were 
applied to the deck top flanges also through timber blocks. Transverse ties were installed at the 
load locations and near deck supports to prevent deck sheets from spreading under applied load. 
 

 
Figure 1: Dimensions [mm] of deck profiles used for model validation 

 
FE models of the tested deck profiles were created in a commercial general-purpose software 
ANSYS using actual base steel thickness and actual mechanical properties of the steel reported by 
Fauth (2015). Corner radii at the intersections of the deck top and bottom flanges with the deck 
webs were included in the models, whereas the web and top flange stiffeners were modeled with 
sharp corners. The deck was modeled with four-node structural shell elements, SHELL181, with 
five integration points and six degrees of freedom at each node.  
 
The deck material behavior was defined by multilinear isotropic hardening models (MISO) with 
von Mises plasticity. The deck stress-strain diagrams were described by the nonlinear models 
proposed by Gardner and Yun (2018) with key input parameters determined from actual yield and 
tensile strengths of the steel reported by Fauth (2015). An elastic modulus of 2.03×105 MPa and a 
Poisson’s ratio of 0.3 were specified. The true stresses and strains, calculated from the engineering 
stresses and strains according to Appendix C.6 of EN 1993-1-5:2006, were used in the models.  
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Deck models were meshed with quadrilateral elements with the maximum sizes of 5 and 10 mm 
in the directions across and along the deck span, respectively. This mesh density was determined 
from a convergence study to be optimal from the accuracy and computational efficiency 
standpoints (Degtyarev 2020). 
 
Figure 2 shows boundary conditions of the FE deck models. Only one-half of the deck sheet was 
modeled due to the symmetry in the boundary and loading conditions. The ANSYS symmetry 
degree-of-freedom constraints were applied to the nodes at the deck mid-span. Vertical translations 
of the deck top flange nodes were restrained at the deck support. Lateral displacement of one node 
at the deck bottom flange edge was restrained to prevent rigid body motion. The deck models were 
loaded by forces applied to deck bottom flanges. Vertical displacements of deck bottom flange 
nodes at the load locations were coupled. Transverse ties were modeled by coupling lateral 
displacements of nodes at the deck panel edges at the load locations and near deck supports. 
 

 
 

Figure 2: Boundary conditions of deck used for model validation 
 
Deck models were analyzed in two steps. Elastic buckling analyses conducted to obtain elastic 
buckling modes and moments were followed by nonlinear static analyses performed to obtain 
ultimate moment capacities. The nonlinear static analyses were carried out on the models that 
included initial geometric imperfection (IGI) distributions based on the first elastic buckling mode 
obtained from the elastic buckling analysis. The first elastic buckling mode of the models was 
distortional buckling of the deck compression flanges characterized by vertical deformations of 
the top flange longitudinal stiffener. The IGI magnitude of btf/150, where btf is deck top flange 
width, was specified in the model based on a study of different IGI magnitudes presented elsewhere 
(Degtyarev 2020). The absolute IGI magnitudes were 0.83 and 1.03 mm for the 73 and 56 mm 
deep decks, respectively. Large-deflection effects were included into the FE models to account for 
the geometric nonlinearity. 
 
Comparisons of deck load-deflection diagrams and ultimate moments obtained from the tests and 
the FE simulations presented in Figs. 3 and 4, respectively, show very good agreements between 
the experimental and numerical data. The 1st and 3rd deliveries shown in Fig. 3 refer to deck made 
from different coils of steel and delivered to the testing laboratory at different times (Fauth 2015). 
In Fig. 4, Mu,test and Mu,FEA are ultimate moments from tests and FE simulations, respectively.  
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Figure 3: Load-deflection diagrams from tests and FE simulations 
 

 
 

Figure 4: Comparison of ultimate moments from tests and FE simulations 
 
Based on these results, it can be concluded that the developed FE models can predict the structural 
response and the ultimate moment capacity of steel deck well. Therefore, the developed FE deck 
models can be used for parametric studies of CFS deck in bending.     
 
3. Numerical parametric studies 
The developed FE deck models were used for numerical parametric studies of elastic buckling and 
post-buckling strength of CFS deck profiles manufactured in the US. Figure 5 shows deck profiles 
considered in the parametric studies. They included 25 mm deep 1F form deck, 38 and 77 mm 
deep 1.5B and 3N roof decks, and 53 and 77 mm deep 2C and 3C composite decks with 2 different 
sizes of flange stiffeners. Several modified profiles were also considered. To study the effects of 
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top flange stiffeners on the elastic buckling and post-buckling strength, top flange stiffeners of two 
different sizes were added to 1.5B deck. The modified profiles are referred to as 1.5BST1 and 
1.5BST2. To study the effects of the level of deck non-symmetry on the elastic buckling and post-
buckling strength, the bottom flanges of 1.5B and 3N decks were made wider, so their widths were 
equal to the widths of the top flanges. These modified profiles were denoted as 1.5BR and 3NR. 
Four steel thicknesses were considered for each studied deck: 0.45, 0.60, 0.75, and 0.91 mm (26, 
24, 22, and 20 GA, respectively) for 1F deck and 0.75, 0.91, 1.20, and 1.52 mm (22, 20, 18, and 
16 GA, respectively) for all other decks. All decks were simply-supported with span lengths of 
1219, 1829, 2438, and 3658 mm for profiles with depths of 25, 38, 53, and 77 mm, respectively. 
 

 
 

Figure 5: Dimensions [mm] of deck profiles used in parametric studies 
 
The parametric study was carried out in two phases. In Phase 1, the effects of deck boundary 
conditions and transverse ties on the elastic buckling and post-buckling strength of the deck were 
studied. In Phase 2, the effects of steel constitutive models, yield stress, and deck profile geometry 
on the elastic buckling and post-buckling strength were evaluated using the FE deck models with 
boundary conditions selected based on the results from Phase 1. Overall, 32 and 440 FE deck 
models were created and analyzed in Phases 1 and 2, respectively.  
 
3.1 Effects of boundary conditions and transverse ties 
The effects of deck boundary conditions and transverse ties were studied on two deck profiles, 1F 
and 3CST1, which represent the shallowest and deepest decks considered in the study. 1F deck 
has flat flanges, while 3CST1 deck has one longitudinal intermediate stiffener in each flange. A 
yield stress of 276 MPa and the elastic-perfectly plastic material behavior of steel were specified.  
 
Two different boundary conditions shown in Fig. 6 were evaluated. In the top-flange-supported-
bottom-flange-loaded (TFS-BFL) models (Fig. 6a), the loads were applied to the deck bottom 
flanges and the support reactions were transferred to the deck top flanges as in the physical tests 
described above. In the bottom-flange-supported-top-flange-loaded (BFS-TFL) models (Fig. 6b), 
the loads were applied to the deck top flanges and the support reactions were transferred to the 
deck bottom flanges. In the BFS-TFL models, deck webs are in compression, which may result in 
web crippling contributing to the elastic buckling and post-buckling strength of the deck. In the 
TFS-BFL models, deck web crippling is not a factor, because the deck webs are in tension.  
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Figure 6: Deck boundary conditions for a) TFS-BFL and b) BFS-TFL models 

 
Figure 6 shows FE models with transverse ties, which were provided at 914 mm on center in 
accordance with the maximum deck side lap connection spacing allowable in the US. The first ties 
were specified at 152 and 457 mm from the support for 1F and 3CST1 decks, respectively, to 
ensure that the tie locations were symmetrical about the deck mid-span and that no tie was provided 
at the deck mid-span. The models without transverse ties (not shown in Fig. 6) were also analyzed.  
 
All other characteristics of the TFS-BFL and BFS-TFL models were similar. Only one-half of the 
deck span deck was modeled with the symmetry boundary conditions at the mid-span. The FE 
models simulated four-point bending tests with loads applied as forces at L/3 from the deck 
supports, where L is deck span. Vertical displacements of the deck flange nodes at the load 
locations were coupled. All other parameters of the FE models were the same as described in 
Section 2.  
 
The first elastic buckling mode for 1F decks with flat compression flanges was local buckling of 
the compression flanges shown in Fig. 7a. 3CST1 decks demonstrated both the distortional and 
local buckling of the compression flanges with longitudinal intermediate stiffeners shown in Figs. 
7b and 7c. For the 0.75 and 0.91 mm thick decks, the local buckling preceded the distortional 
buckling, whereas the distortional buckling mode came first for the 1.20 and 1.52 mm thick decks.  
 
Figure 8 shows the effects of the boundary conditions and transverse ties on the elastic buckling 
and ultimate moments. In Fig. 8, Mcrl, Mcrd, and Mu are local buckling, distortional buckling, and 
ultimate moments, respectively, from FE simulations. The differences in the boundary conditions 
and transverse ties did not affect the elastic buckling moments of shallow 1F decks with all 
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considered thicknesses. For this deck, the ultimate moments for the BFS-TFL models were smaller 
than those for the TFS-BFL models by 2-7% and 3-9% for the models with and without transverse 
ties, respectively. The ultimate moment capacity reduction increased when the deck thickness 
reduced. The reduction in the ultimate moments is attributed to the effects of the deck web 
crippling on the ultimate moment capacity, which was more pronounced in the lighter deck models 
without transverse ties. For the TFS-BFL models of 1F deck, transverse ties did not affect the 
ultimate moment. For the BFS-TFL models of 1F deck, transverse ties resulted in a small, 1-4 %, 
increase in the ultimate moments. 
 

 
Figure 7: Elastic buckling modes: a) local buckling of flat compression flanges, b) distortional and c) local buckling 

of compression flanges with longitudinal intermediate stiffeners 
 

 
Figure 8: Effects of boundary conditions and transverse ties on elastic buckling and ultimate moments  

 
The BFS-TFL models of 3CST1 deck with and without ties showed 2-4% greater local elastic 
buckling moments than the TFS-BFL models. The distortional elastic buckling moments of the 
BFS-TFL models were 1-3% smaller than those for the TFS-BFL models when transverse ties 
were provided. For 3CST1 deck with both considered boundary conditions, the distortional elastic 
buckling moments were approximately equal when no ties were provided. The ultimate moments 
of the BFS-TFL models of 3CST1 deck with and without ties were up to 15 and 26%, respectively, 
smaller than the ultimate moments for the TFS-BFL models. Greater ultimate moment reductions 



 9

were observed for lighter deck. The addition of ties to the models of 3CST1 deck with both 
considered boundary conditions resulted in increases in the elastic buckling and ultimate moments. 
The increases in the elastic buckling moments were approximately the same for the TFS-BFL and 
BFS-TFL models, whereas the BFS-TFL models showed significantly greater increases in the 
ultimate moment capacities than the TFS-BFL models (6-18% vs. 0-4%). Greater increases in the 
elastic buckling and ultimate moments of 3CST1 deck were obtained for lighter deck profiles. 
 
The presented results show that the boundary conditions and the transverse ties may affect the 
elastic buckling and ultimate moments of deck, especially the one with slender webs. Therefore, 
appropriate boundary conditions should be used in laboratory testing and numerical simulations to 
obtain accurate results. The TFS-BFL models without ties were selected for further parametric 
studies. These models exclude the effects of web crippling on the deck flexural strength and 
provide true moment capacities of the deck. Due to the relatively small effects of the ties on the 
elastic buckling and ultimate moments in the TFS-BFL models (see Fig. 8c), the transverse ties 
were not included in the parametric study models.         
 
3.2 Effects of steel constitutive models, yield stress, and deck profile geometry 
In this phase, FE models were created and analyzed for all deck profiles shown in Fig. 5. Four 
different steel yield strengths—228, 276, 345, and 414 MPa—were studied. Three different steel 
material models—elastic-perfectly plastic, bilinear, and nonlinear—were examined. The nonlinear 
material models were described by formulas proposed by Gardner and Yun (2018). 1F, 1.5BR, 
2CST1, 2CST2, 3CST1, 3CST2, and 3NR symmetrical profiles, as well as 1.5BST2 deck were 
analyzed only in the normal orientation bending with the deck top flanges in compression. 1.5B, 
1.5BST1, and 3N non-symmetrical profiles were analyzed in the normal and inverted orientation 
bending with the wider upper flanges in compression and tension, respectively.     
 
3.2.1 Deck profiles with flat compression flanges 
In this section, results for 1F, 1.5B, 1.5BR, 3N, and 3NR decks in the normal orientation and 1.5B, 
1.5BST1, and 3N deck in the inverted orientation bending are presented and discussed. 
 
3.2.1.1 Elastic buckling 
Flat compression flanges of all decks in the normal orientation bending were longitudinally 
stiffened by deck webs. These profiles demonstrated local elastic buckling modes of compression 
flanges similar to the one shown in Fig. 7a. The edge compression flanges of the deck in the 
inverted orientation bending were unstiffened along one edge and demonstrated both local and 
distortional elastic buckling modes (Fig. 9).    

 
Figure 9. Elastic buckling modes of unstiffened flat compression flanges of profiles loaded in the inverted 

orientation bending: a) local and b) distortional buckling 
 
Buckling coefficients of flat deck flanges in compression were determined from local elastic 
buckling moments obtained from the FE simulations using the following equation: 
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 𝑘 = ெ೎ೝ೗,ಷಶಲௌ೑ ଵଶ(ଵିఓమ)గమா ቀ௪௧ ቁଶ
  (1) 

where Mcrl,FEA is local elastic buckling moment from FE simulations, Sf is section modulus of full 
deck section for compression deck flange, μ is Poisson’s ratio of steel, E is modulus of elasticity 
of steel, w is flat width of deck flange, and t is deck thickness.   
 
Figure 10 shows buckling coefficients for flat stiffened and unstiffened compression flanges of 
deck calculated with Eq. (1) as functions of the relative compression zone depth, Yna/hd, where Yna 
is vertical distance from deck compression flange to neutral axis of full deck section and hd is deck 
height. Buckling coefficients for flat stiffened and unstiffened plates specified in AISI S100-16 (4 
and 0.43, respectively) are also shown in Fig. 10.     

 
Figure 10. Buckling coefficients for deck flat compression flanges: a) stiffened and b) unstiffened flanges 

 
Figure 10 shows that buckling coefficients for stiffened flanges increased when Yna/hd decreased. 
When Yna/hd was smaller than 0.6, the deck buckling coefficients were greater than the buckling 
coefficient for a long simply supported plate. When Yna/hd was greater than 0.6, the deck buckling 
coefficients were smaller than the buckling coefficient for a long simply supported plate. A similar 
trend was observed for the unstiffened flanges. The buckling coefficient reduced when Yna/hd 
increased. This can be explained by the interaction between flanges and webs of the deck and by 
the contribution of deck webs to the flange rigidity. As Fig. 10 shows, the web contribution reduced 
when Yna/hd increased. When the web compression zone became large, which corresponded to 
Yna/hd of 0.60 and 0.63 for stiffened and unstiffened flanges, respectively, buckling of the 
compression part of the web appears to have a negative effect on the compression flange buckling, 
which made the buckling coefficients smaller than the values for simply supported plates.    
 
The Mcrd,FEA/Mcrl,FEA ratios, where Mcrd,FEA is distortional elastic buckling moment from FE 
simulations, ranged from 0.77 to 1.74 and from 0.66 to 1.31 for the 38 and 77 mm deep deck 
profiles, respectively. The Mcrd,FEA/Mcrl,FEA ratios reduced when the deck thickness increased.  
 
3.2.1.2 Post-buckling strength 
The deck ultimate moments obtained from the FE simulations were compared with the deck 
flexural strengths calculated using DSM and EWM of AISI S100-16. Table 2 compares the 
Mu,FEA/Mu,DSM ratios for the FE models with different stress-strain relationships of steel, where 
Mu,FEA and Mu,DSM are ultimate deck moments predicted by FE simulations and DSM. Table 2 
shows that models with the nonlinear steel stress-strain curves predicted slightly greater (up to 4% 
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on average) ultimate moments when compared with the elastic-perfectly plastic and bilinear 
models. The nonlinear stress-strain diagrams also demonstrated slightly smaller scatter of the 
Mu,FEA/Mu,DSM ratios characterized by smaller COVs. Overall, the differences in the ultimate 
moments predicted by FE models with the studied steel material models were relatively small. 
Therefore, the FE simulation results for the nonlinear steel models only were used in further 
analyses. Table 2 also shows that the Mu,FEA/Mu,DSM ratios were relatively high indicating that DSM 
adopted in AISI S100-16 may be overly conservative for decks with flat compression flanges. 
 

Table 2: Summary of Mu,FEA/Mu,DSM values for deck with flat flanges in compression 
SSR 1 Elastic-Perfectly Plastic Bilinear Nonlinear 

Fy (MPa) 228 276 345 414 228 276 345 414 228 276 345 414 
min 1.01 1.04 1.04 1.04 1.01 1.04 1.04 1.04 1.09 1.09 1.09 1.09 
max 1.43 1.49 1.55 1.60 1.44 1.49 1.55 1.60 1.37 1.43 1.51 1.55 
mean 1.18 1.18 1.20 1.22 1.19 1.19 1.20 1.22 1.22 1.22 1.22 1.22 

COV 2 0.096 0.105 0.116 0.122 0.098 0.105 0.117 0.122 0.077 0.083 0.098 0.113 
Notes: 1. SSR stands for stress-strain relationship of steel; 2. COV stands for coefficient of variation. 
 

Figure 11 compares the FE strength predictions for the deck profiles with flat compression flanges 
with the AISI S100-16 local and distortional buckling strength curves, and the elastic buckling 
curve described by Eqs. (2), (3), and (4), respectively.  
 

 
Figure 11: Strength curves and FE predictions for a) local and b) distortional buckling of deck with flat flanges in 

compression 
 

 ெ೙೗ெ೤ = ቐ 1 𝑓𝑜𝑟 𝜆௟ ≤ 0.776ቈ1 − 0.15 ൬ ଵఒ೗మ൰଴.ସ቉ ൬ ଵఒ೗మ൰଴.ସ  𝑓𝑜𝑟 𝜆௟ > 0.776   (2) 

 

 ெ೙೏ெ೤ = ቐ 1 𝑓𝑜𝑟 𝜆ௗ ≤ 0.673ቈ1 − 0.22 ൬ ଵఒ೏మ൰଴.ହ቉ ൬ ଵఒ೏మ൰଴.ହ  𝑓𝑜𝑟 𝜆ௗ > 0.673   (3) 

 
 ெ೙೗ெ೤ = ଵఒ೗మ , ெ೙೏ெ೤ = ଵఒ೏మ  (4) 

 
where Mnl and Mnd are nominal flexural strengths (ultimate moments from FE simulations) for 
local and distortional buckling, respectively; My is yield moment of full section; 𝜆௟ = ඥ𝑀௬ 𝑀௖௥௟⁄  
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and 𝜆ௗ = ඥ𝑀௬ 𝑀௖௥ௗ⁄  are slenderness factors of local and distortional buckling, respectively; Mcrl 
is critical elastic local buckling moment; and Mcrd is distortional elastic buckling moment. 
 
Figure 11 shows that the ultimate moments for local buckling from the FE simulations were 
considerably greater than the elastic buckling moment capacities for 𝜆௟ >1.25, which indicates that 
the deck profiles, especially the ones with large local buckling slenderness, exhibited significant 
post-buckling strength. The DSM local buckling strength predictions were conservative for the 
majority of the studied decks and overly conservative for the non-symmetrical decks (1.5B and 
3N) with wider flanges in compression. These results are very similar to the Winter test results 
discussed by Schafer and Peköz (1998). It is interesting to note that the symmetrical decks with 
slender compression flanges of the same widths as the tension flanges (1.5BR and 3NR) showed 
smaller differences between the flexural strengths predicted by DSM and the FE simulations when 
compared with the non-symmetrical profiles (1.5B and 3N). These results indicate that the local 
post-buckling strength of decks with flat compression flanges depends not only on the compression 
flange slenderness, but also on the level of deck non-symmetry.  
 
The FE-predicted ultimate moments for distortional buckling of decks with 𝜆ௗ ≤ 1 were slightly 
greater than those predicted by DSM. For decks with 𝜆ௗ  > 1, DSM predicted slightly greater 
strengths than those obtained from the FE simulations. The FE ultimate moments were below the 
elastic distortional buckling curve, which indicates that the studied profiles with flat unstiffened 
compression flanges did not exhibit the distortional post-buckling strength. Figure 11 also shows 
that decks with flat flanges and small slenderness ratios demonstrated significant inelastic reserve 
strength of up to 35%, further analysis of which was beyond the scope of this study.      
 
Figure 12 shows dependence of the Mu,FEA/Mu,DSM ratios from deck local and distortional 
slenderness and comparison statistics between the FE and DSM predictions. The Mu,FEA/Mu,DSM 
ratios range from 0.88 to 1.66 with the mean value of 1.24 for local buckling and from 0.78 to 1.34 
with the mean value of 1.15 for distortional buckling. These results indicate that there is a room 
for improvement of the current DSM provisions for steel deck with flat compression flanges.    
 

 
Figure 12: Effects of slenderness on Mu,FEA/Mu,DSM for a) local and b) distortional buckling of deck with flat 

compression flanges  
 
Figure 13 shows dependence of the Mu,FEA/Mu,EWM ratios from deck local and distortional 
slenderness and comparison statistics between the FE and EWM predictions. On average, EWM 
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shows a better agreement with the FE predictions for deck with flat compression flanges than 
DSM. The Mu,FEA/Mu,EWM ratios range from 0.75 to 1.27 with the mean value of 1.05 for local 
buckling and from 0.65 to 1.34 with the mean value of 1.05 for distortional buckling. However, 
moment capacities of deck failing in distortional buckling predicted by EWM were not 
conservative for deck with 𝜆ௗ > 1.0. The scatter of Mu,FEA/Mu,EWM was considerably greater than 
the scatter of Mu,FEA/Mu,DSM for distortional buckling. It is also interesting to note that for local 
buckling the Mu,FEA/Mu,EWM values decrease when the slenderness factor increases, whereas the 
Mu,FEA/Mu,DSM values decrease when 𝜆௟ < 0.8, increase when 0.8 < 𝜆௟ ≤ 2.0, and stay approximately 
the same when 𝜆௟ > 2.0. 

 
Figure 13: Effects of slenderness on Mu,FEA/Mu,EWM for a) local and b) distortional buckling of deck with flat 

compression flanges 
 
The Yna/hd ratio can be considered as a measure of the deck non-symmetry level, alternative to the 
deck flange widths ratio. The former is deemed to be more convenient for decks with longitudinal 
intermediate flange stiffeners, because Yna/hd depends on the stiffener size and shape, whereas the 
flange width ratio does not. The Mu,FEA/Mu,DSM and Mu,FEA/Mu,EWM ratios for local buckling plotted 
against Yna/hd in Fig. 14 show dependence of Mu,FEA/Mu,DSM from Yna/hd when the latter is in the 
range from 0.37 to 0.50 and independence of Mu,FEA/Mu,EWM from Yna/hd. 
 

 
Figure 14: Effects of relative compression zone depth of deck with flat flanges on a) Mu,FEA/Mu,DSM and b) 

Mu,FEA/Mu,EWM governed by local buckling 
 
3.2.2 Deck profiles with longitudinal intermediate stiffeners in compression flanges 
In this section, results for 1.5BST1, 1.5BST2, 2CST1, 2CST2, 3CST1, and 3CST2 decks in the 
normal orientation bending are presented and discussed. 
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3.2.2.1 Elastic buckling 
The decks with longitudinal intermediate stiffeners in compression flanges demonstrated 
distortional and local elastic buckling modes similar to the ones shown in Figs. 7b and 7c. For the 
decks with larger stiffeners (1.5BST1, 2CST1, and 3CST1), local elastic buckling preceded 
distortional buckling for steel thicknesses of 0.75 and 0.91 mm, whereas distortional buckling 
occurred first for the 1.20 and 1.52 mm thick decks. In the decks with smaller stiffeners (1.5BST2, 
2CST2, and 3CST2), distortional buckling was observed first for all considered thicknesses. 
 
Figure 15 compares local and distortional buckling moments of the studied decks obtained from 
the FE simulations and calculated in accordance with AISI S100-16 as follows: 

 𝑀௖௥௟ = 𝑆௙𝑘௟௢௖ గమாଵଶ(ଵିఓమ) ቀ ௧௪ቁଶ
 (5) 

 𝑀௖௥ௗ = 𝑆௙𝑘ௗ గమாଵଶ(ଵିఓమ) ቀ ௧௪ቁଶ
 (6) 

where 𝑘௟௢௖ and 𝑘ௗ are plate buckling coefficients for local and distortional buckling calculated as 
described in Appendix 1 of AISI S100-16.  
 

 
Figure 15: Comparisons of a) local and b) distortional buckling moments of deck with longitudinal intermediate 

stiffeners in compression flanges from FE simulations and AISI S100-16 predictions 
 
Figure 15 shows that the deck local buckling moments predicted by Eq. (5) agreed very well with 
the FE predictions. The deck distortional buckling moments predicted by Eq. (6), on the other 
hand, were considerably smaller than the distortional buckling moments from the FE simulations.   
 
3.2.2.2 Post-buckling strength 
Table 3 compares the Mu,FEA/Mu,DSM ratios for the FE models with different steel material diagrams. 
The nonlinear relationship resulted in slightly smaller values of the deck flexural strength and a 
greater scatter of the Mu,FEA/Mu,DSM ratios than the elastic-perfectly plastic and bilinear models. 
DSM predicted the flexural strength of the deck with longitudinal intermediate stiffeners better 
than the strength of the deck with flat flanges. The FE simulation results for the nonlinear steel 
models only were used in further analyses due to the relatively small differences in the deck 
strengths predicted by the models with the considered different steel constitutive models. 
 
Figure 16 compares the FE strength predictions with the AISI S100-16 local and distortional 
strength curves, and the elastic buckling curve. The FE-predicted ultimate moments for local 
buckling were below the DSM strength curve, which indicates a slight non-conservatism of DSM 
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in predicting flexural strength of decks with longitudinal intermediate flange stiffeners failing in 
local buckling. Figure 16b shows that DSM agreed with the parametric study results for the deck 
failing in distortional buckling reasonably well. It gave, however, overly conservative predictions 
for 1.5BST2 deck, which is a non-symmetrical deck with small stiffeners. Due to the relatively 
small size of the stiffeners, the buckling and failure modes of 1.5BST2 deck were similar to those 
of 1.5B deck. Figure 16 also shows that the deck sections with 𝜆௟  < 1.2 failing in local and 
distortional buckling exhibited the inelastic buckling failure mode. Deck sections with small 
slenderness ratios showed inelastic reserve strength of up to 35%. 
 
Table 3: Summary of Mu,FEA/Mu,DSM values for deck with longitudinal intermediate stiffeners in compression flanges 

SSR 1 Elastic-Perfectly Plastic Bilinear Nonlinear 
Fy (MPa) 228 276 345 414 228 276 345 414 228 276 345 414 

min 0.95 0.97 0.97 0.93 0.96 0.97 0.98 0.93 0.86 0.88 0.89 0.86 
max 1.28 1.27 1.26 1.24 1.30 1.29 1.27 1.26 1.36 1.33 1.30 1.27 
mean 1.08 1.08 1.08 1.07 1.09 1.09 1.08 1.07 1.05 1.04 1.03 1.01 

COV 2 0.118 0.108 0.096 0.093 0.120 0.111 0.099 0.100 0.171 0.157 0.142 0.134 
Notes: 1. SSR stands for stress-strain relationship of steel; 2. COV stands for coefficient of variation. 
 

 
Figure 16: Strength curves and FE predictions for a) local and b) distortional buckling of deck with longitudinal 

intermediate stiffeners in compression flanges  
 
The Mu,FEA/Mu,DSM and Mu,FEA/Mu,EWM ratios plotted as functions of deck slenderness in Figs. 17 
and 18 show that DSM and EWM resulted in almost identical predictions of the deck local buckling 
strength. EWM, however, resulted in less conservative results for the deck distortional buckling 
strength, especially for the slender deck sections.  
 

 
Figure 17: Effects of slenderness on Mu,FEA/Mu,DSM for a) local and b) distortional buckling of deck with longitudinal 

intermediate stiffeners in compression flanges 
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Figure 18: Effects of slenderness on Mu,FEA/Mu,EWM for a) local and b) distortional buckling of deck with longitudinal 

intermediate stiffeners in compression flanges 
 
4. Design recommendations 
Regression analyses of the obtained results allowed for the development of design equations for 
predicting local and distortional buckling coefficients for deck profiles with flat and longitudinally 
stiffened compression flanges, respectively. Revised DSM equations for local and distortional 
buckling of deck with flat compression flanges were also developed. The developed equations are 
applicable to the profiles considered in this study.            
 
Local buckling coefficients of the deck with flat compression flanges stiffened by webs on both 
sides, 𝑘௟௦, and on one side only, 𝑘௟௨, can be determined with Eqs. (7) and (8), respectively. 
 𝑘௟௦ = 𝑘௦௦ + 𝑘௜௦൫𝑘௙௙ − 𝑘௦௦൯ (7) 
 𝑘௟௨ = 𝑘௦௙௥ + 𝑘௜௨൫𝑘௙௙௥ − 𝑘௦௙௥൯ (8) 
where kss = 4 and kff = 6.97 are buckling coefficients for long plate simply supported on all sides 
and for long plate fixed on long sides and simply supported on short sides, respectively; ksfr = 0.425 
and kffr = 1.277 are buckling coefficients for long plate simply supported on one long side and both 
short sides and free on another long side and for long plate fixed on one longer side, free on another 
long side and simply supported on short sides, respectively; kis and kiu are interaction coefficients 
for flat stiffened and unstiffened deck flanges, respectively, determined using Eqs. (9) and (10). 
 𝑘௜௦ = 0.98 − 1.66 𝑌௡௔ ℎௗ⁄  (9) 
 𝑘௜௨ = ሾ271.28(𝑌௡௔ ℎௗ⁄ ) − 225.77(𝑌௡௔ ℎௗ⁄ )ଶ − 81.20ሿ𝑘௧௨ (10) 
 𝑘௧௨ = 1.04 + 12.54𝑡 − 288.28𝑡ଶ (11) 
 
Figure 19 shows that that the proposed equations predicted buckling coefficients observed in the 
FE simulations reasonably well. 
 
Based on the relationship between Mu,FEA/Mu,DSM and Yna/hd shown in Fig. 14a, the nominal 
moment capacity of deck with flat compression flanges governed by local buckling can be 
predicted using Eqs. (12)-(14). 

 𝑀௡௟ = ൞ 𝑀௬ 𝑓𝑜𝑟 𝜆௟ ≤ ൫0.5 + √0.25 − 𝑎൯ భమഀ൤1 − 𝑎 ൬ெ೎ೝ೗ெ೤ ൰ఈ൨ ൬ெ೎ೝ೗ெ೤ ൰ఈ 𝑀௬ 𝑓𝑜𝑟 ൫0.5 + √0.25 − 𝑎൯ భమഀ < 𝜆௟ ≤ 3.517 (12) 
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 𝑎 = ൜0.16 − 0.004(𝑌௡௔ ℎௗ⁄ )ିଷ.ଽସ 𝑓𝑜𝑟 0.39 < 𝑌௡௔ ℎௗ ≤ 0.64⁄0 𝑓𝑜𝑟 0.37 ≤ 𝑌௡௔ ℎௗ ≤ 0.39⁄  (13) 

 

 𝛼 = ൜1.53(𝑌௡௔ ℎௗ⁄ )ଶ.ଶଵ 𝑓𝑜𝑟 0.39 < 𝑌௡௔ ℎௗ ≤ 0.64⁄0.2 𝑓𝑜𝑟 0.37 ≤ 𝑌௡௔ ℎௗ ≤ 0.39⁄  (14) 

 

 
Figure 19: Comparisons of local buckling coefficients of deck with flat compression flanges predicted using 

proposed equations with those obtained from FE simulations for a) flanges stiffened by webs on both sides and b) 
flanges stiffened by webs on one side only 

 
The nominal moment capacity of deck with flat compression flanges governed by distortional 
buckling can be predicted as follows: 
 

 𝑀௡ௗ = ቐ 𝑀௬ 𝑓𝑜𝑟 𝜆ௗ ≤ 0.820 ൤1 − 0.22 ൬ெ೎ೝ೗ெ೤ ൰൨ ൬ெ೎ೝ೗ெ೤ ൰ 𝑀௬ 𝑓𝑜𝑟 0.820 < 𝜆ௗ ≤ 1.373 (15) 

 
Comparisons of the flexural resistances predicted by the proposed equations with those obtained 
from the FE simulations presented in Fig. 20 show that the developed equations can predict the 
strength of decks with flat compression flanges reasonably well.  
 

 
Figure 20: Comparisons of ultimate moments of deck with flat compression flanges predicted using proposed 

equations with those obtained from FE simulations for a) local and b) distortional buckling  
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According to Bulson (1970) and AISI S100-16, elastic distortional buckling load of plates with 
longitudinal intermediate stiffeners is a function of 𝛾 = 10.92𝐼௦௣ (𝑏௢𝑡ଷ)⁄  and 𝛿 = 𝐴௦ (𝑏௢𝑡)⁄ , 
where Isp is moment of inertia of stiffener about centerline of flat portion of plate, bo is total flat 
width of stiffened plate, and As is gross area of stiffener. The elastic distortional buckling 
coefficients, 𝑘ௗ, for deck compression flanges with longitudinal intermediate stiffeners obtained 
from the FE simulations are plotted against 𝛾 in Fig. 21.  
 

 
Figure 21: Effects of γ and δ on distortional buckling coefficient 

 
The relationship between 𝑘ௗ, γ, and δ shown in Fig. 21 can be described by the following equations 
obtained from a regression analysis of the FE simulation results:  
 
 𝑘ௗ = 𝑎𝛾ఈ (16) 
 𝑎 = 6.96 − 5.65𝛿 (17) 
 𝛼 = 0.65𝛿଴.ଷ଺ (18) 
 
Figure 22 shows a very good agreement of the distortional buckling moments predicted using Eqs. 
(16)-(18) with those obtained from the FE simulations.  
 

 
Figure 22: Comparison of distortional buckling moments predicted using proposed equations with those obtained 

from FE simulations for deck with longitudinal intermediate stiffeners in compression flanges 
 
No design recommendations were developed for the flexural resistance of the deck with 
longitudinal intermediate stiffeners in compression flanges and for the deck with flat compression 
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flanges failing in distortional buckling because the current DSM provisions compared reasonably 
well with the FE simulation results and the data obtained in this study was insufficient for 
developing improved equations.   
 
5. Conclusions  
Elastic buckling and post-buckling strength of CFS deck in bending have been investigated using 
numerical methods. Numerical FE models were validated against published experimental results 
with good agreement observed, after which an extensive parametric study was carried out on 
trapezoidal deck profiles with different heights, thicknesses, and yield stresses commonly used in 
the US. Compression flanges of the studied deck profiles were either flat or had longitudinal 
intermediate stiffeners of different sizes. Different boundary conditions, presence of transverse 
ties, and different steel constitutive models were other parameters of the study. The different 
boundary conditions consisted of the deck supported by top flanges and loaded through bottom 
flanges and the deck supported by bottom flanges and loaded through top flanges. 
 
The different boundary conditions of the deck resulted in a relatively small (0-4%) difference in 
the elastic buckling moments and in a significant (up to 26%) ultimate moment reduction in some 
profiles when the deck was loaded through top flanges and supported by bottom flanges. 
Transverse ties, which simulated deck side lap connections and prevented deck panels from 
spreading, resulted in an increase in the elastic buckling moments up to 9%. When the transverse 
ties were added to the models, the ultimate moment of the deck supported by top flanges and 
loaded through bottom flanges increased by 0-4%, whereas the ultimate moments of the deck 
supported by bottom flanges and loaded through top flanges increased by 6-18%. The different 
constitutive models of steel considered in the study—elastic-perfectly plastic, bilinear, and 
nonlinear—had relatively small effects on the ultimate moments of the deck models. 
 
The elastic buckling coefficients for deck flat compression flanges obtained from the FE 
simulations depended on the relative depth of the deck compression zone, Yna/hd, and were 
considerably greater than the plate buckling coefficients for small Yna/hd ratios and slightly smaller 
than the plate buckling coefficients for large Yna/hd ratios. Deck profiles with flat compression 
flanges, especially non-symmetrical profiles with wider flanges in compression, failing in local 
buckling exhibited considerable post-buckling strength. DSM of AISI S100-16 provided overly 
conservative predictions of the flexural strengths for the non-symmetrical profiles with wider 
flanges in compression and reasonably good predictions of the flexural strength for similar 
symmetrical profiles. Therefore, the post-buckling strength of the decks with flat compression 
flanges is a function of not only the deck flange slenderness, but also the level of the deck non-
symmetry, which can be expressed either by the ratio of the deck flange widths or by Yna/hd. EWM 
provided better predictions of the flexural strength for the deck with flat flanges failing in local 
buckling than DSM, but the flexural strengths of the deck failing in distortional buckling predicted 
by EWM were not conservative for profiles with large slenderness factors. 
 
Local elastic buckling moments of decks with longitudinal intermediate stiffeners in compression 
flanges obtained from FE simulations showed good agreements with those predicted by the AISI 
S100-16 provisions. The distortional buckling moments predicted with the AISI S100-16 
equations were smaller than the distortional buckling moments from the FE simulations. The DSM 
and EWM equations showed slight non-conservatism in predicting flexural strength of the deck 
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with flange stiffeners failing in local buckling. The DSM strength curve for distortional buckling 
showed a reasonably good agreement with the FE simulation results, except for a non-symmetrical 
deck with small stiffeners in wider compression flanges, which flexural strength was under-
predicted by DSM. EWM provided less conservative predictions of the flexural strength for the 
deck failing in distortional buckling, especially for slender deck sections, than DSM. Decks with 
small slenderness considered in the study demonstrates considerable (up to 35%) inelastic reserve 
strength.  
 
Design equations have been proposed for predicting local elastic buckling coefficients of deck 
with flat compression flanges and distortional buckling coefficients of deck with longitudinal 
intermediate stiffeners in compression flanges. Modifications of DSM for better predictions of the 
flexural strength of deck with flat compression flanges failing in local and distortional buckling 
have been also proposed. The proposed equations agreed well with the FE simulation results.  
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