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Abstract 

In this paper the effect of transverse stiffeners on the torsional buckling of thin-walled members is 

discussed. Though the torsional behavior of thin-walled members is a classic topic of structural 

engineering university courses, there is no comprehensive understanding on how the transverse 

stiffeners modify the behavior. In this paper an analytical approach is presented, which, at least in 

simpler cases, leads to closed-formed solution for the critical force. The analytical solutions are 

compared to shell finite element solutions, using a general purpose finite element software as well 

as the specific constrained finite element method, which has just recently been extended to handle 

members with transverse plate elements. The results illustrate the applicability and also the 

limitations of the various methods. The analytical solutions are helpful in understanding the effect 

of transverse stiffeners on the torsional behavior. Moreover, the results suggest that the transverse 

stiffeners have beneficial, and sometimes considerable effect on the critical load to pure torsional 

buckling of columns, which effect could be considered also in the design. 

 

1. Introduction 

Buckling is essential in analyzing thin-walled members. There are various buckling types, 

depending on the loading of the member and depending on the displacements involved in the 

buckling. Even if we limit our investigations to buckling types characterized by practically rigid 

cross-sections, various buckling types exist. In the case of columns flexural, pure torsional and 

flexural-torsional buckling types are usually distinguished; in the case of beams the global 

buckling is termed lateral-torsional buckling. In most of these buckling types torsion plays 

important role. Though from practical aspect the pure torsional buckling is rarely governing, this 

is the simplest form of buckling with torsion, therefore the proper understanding of pure torsional 

buckling can help in solving other, more frequent buckling problems, too.  

 

Torsional behavior of thin-walled members is complicated, characterized by both Saint-Venant 

torsion (which induces shear stresses only) and warping (which induces axial and shear stresses). 

The classic description of the problem is presented in textbooks, e.g. in Vlasov (1961). Though 

the underlying differential equation (D.E.) is known, the exact analytical solution is challenging 

even for the simplest cases. There is limited number of research on pure torsional buckling of 
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columns, though some specific problems are addressed recently, e.g. in Chroscielewski et al 

(2006), Rao and Rao (2017), Taras and Greiner (2008). In this paper the investigation of pure 

torsional buckling of columns, with a special focus on the effect of transverse plate elements, is 

reported.  

 

In thin-walled members in many cases transverse plate elements are applied. Such transverse plate 

element may appear as an end-plate, a gusset plate, or a transverse stiffener. Though stiffeners, 

end-plates and gusset plates have different roles and might have different shapes, etc., they have 

very similar mechanical effect on the torsional behavior of members. Thus, the term “transverse 

stiffener” will mostly be used in this paper, but in a general meaning.  

 

According to the authors best knowledge analytical solution for torsional buckling of thin-walled 

columns/beams with directly considering transverse stiffeners or end-plates is not yet reported. 

Analytical considerations hardly appear in the literature, which is especially true for pure torsional 

buckling. In Fujii and Ohmura (1985) a similar question is partially discussed, but no solution is 

presented. Therefore, in this paper first analytical solution for the critical load to pure torsional 

buckling of thin-walled columns with transverse elements is briefly reported. Then numerical 

investigations are presented: analytical results are compared to those from shell finite element 

solutions. The finite element results are produced by using the commercial finite element software 

Ansys (2019), and also by using the special constrained finite element method (cFEM), as in 

Ádány (2018) and Ádány et al. (2018), which has just recently been extended to members with 

transverse plate element, see Trung and Adany (2019). The examples justify the validity of the 

provided analytical solutions, as well as give a hint on their application limits.  

 

2. Analytical solution: I-section members with rectangular stiffeners 

 

2.1 Overview 

The analytical solution for pure torsional buckling is derived here for a doubly-symmetrical I-

section column supplemented by rectangular plates. The member itself is modelled as a one-

dimensional element with cross-sections perpendicular to the member axis, i.e., a beam-model is 

adopted. The cross-sections are assumed to be rigid, hence the displacement of the member are 

given by the displacement function of the member axis. Classic beam theory is assumed, that is 

for the torsional behavior Vlasov’s theory is applied (which can be regarded as the extension of 

the classic Euler-Bernoulli beam theory). The material is linearly elastic, isotropic. The stiffeners 

are kept symmetric with respect to the web position and also perpendicular to the member axis. 

The member is assumed to have nst transverse plates, the position of each is given by 𝑥𝑠𝑡,𝑖 (𝑖 =

1, … , 𝑛𝑠𝑡,0 ≤ 𝑥𝑠𝑡,𝑖 ≤ 𝐿); L  is the length of the member.  As Fig. 1a) illustrates, the depth and width 

of the member cross-section is h and b, respectively, interpreted as midline dimensions. The i-th 

stiffener plate has a thickness 𝑡𝑠𝑡,𝑖, its height and width are ℎ𝑠𝑡,𝑖 and 𝑏𝑠𝑡,𝑖, respectively, and now it 

is assumed that ℎ𝑠𝑡,𝑖 ≤ ℎ and 𝑏𝑠𝑡,𝑖 ≤ 𝑏. The domain determined by the area of the i-th stiffener is 

denoted as 𝛺𝑆,𝑖. The transverse stiffeners are connected to the main member, in a general case, 

through domain 𝛺𝐿,𝑖. The free edges of a stiffener plate are collectively denoted as domain 𝛺𝐹,𝑖. 

The coordinate system defined in such a manner that its ‘O’ origin would coincide the ‘C’ centroid 

of the cross section, which is also the shear center. The member is subjected to uniform 

compression, by applying two end forces, assumed to be uniformly distributed over the end cross 

sections. 
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Three configurations for the connection between the member and the stiffeners are considered 

here. In the case of “flanges-only” connection the stiffener is connected to the flanges of the 

member only. In the case of “web-only” the stiffener is connected to the web of the member only. 

In the case of “web-and-flanges” connection the stiffener is connected to both the web and flanges 

of the member. The most practical case is when the stiffener is connected both to the web and the 

flanges, still, the other two cases have been found to be useful. It was concluded that no strong 

(i.e., exact) solution of the D.E. of the transverse plate can be found for the “web-and-flanges” 

case if the cross-section of the main member is assumed to be rigid. At the same time, if the 

stiffener is connected either to the web or to the flanges only, exact analytical solution for the D.E. 

of the transverse plate is possible. To demonstrate the validity of the newly derived formulae, thus, 

“flanges-only” and “web-only” cases have also been considered. 

 
a) b) c) d) 

Figure 1: a) coordinates, dimensions, b) flanges-only, c) web-only, d) web-and-flanges connection 

 

Since pure torsional buckling is investigated, the displacement of the member is described solely 

by the function of the twisting rotation 𝜃(𝑥). It has to satisfy the boundary conditions defined by 

the supports. It is assumed that the function is expressed as: 

 𝜃(𝑥) = ∑ 𝑐𝑖
𝑘
1 𝑓𝑖 (𝑥) (1) 

where 𝑐𝑖 (𝑖 = 1, … 𝑘) are the unknown parameters and 𝑓𝑖 (𝑥) are predefined functions. 

 

The u, v and w translational displacements (along the x, y and z-axis, respectively) of a general 

point of the member are determined as follows: 

 𝑣𝜃(𝑥, 𝑦, 𝑧) = 𝜃(𝑥)𝑧 (2) 

 𝑤𝜃(𝑥, 𝑦, 𝑧) = −𝜃(𝑥)𝑦 (3) 

 𝑢𝜃(x, y, z) =
∂𝜃(𝑥)

∂x
𝑦𝑧  (4) 

The stiffeners are assumed to be thin plates, hence the 𝑤𝑠𝑡,𝑖(𝑦, 𝑧)  displacement function of the i-

th stiffener (where 𝑖 = 1, . . . , 𝑛𝑠𝑡) should satisfy the D.E. of the Kirchhoff-Love plate theory, plus 

it should  satisfy the boundary conditions, too, which partly comes from the compatibility between 

the member and the stiffener (over domain 𝛺𝐿,𝑖) and partly comes from the fact that the normal 
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stress resultant (i.e., bending moment) along the plate free edges (i.e., over domain 𝛺𝐹,𝑖) is zero.  

The D.E. of the plate is as follows: 

 ∆∆𝑤𝑠𝑡,𝑖(𝑦, 𝑧) =
𝜕4𝑤𝑠𝑡,𝑖

𝜕𝑦4 + 2
𝜕4𝑤𝑠𝑡,𝑖

𝜕𝑦2𝜕𝑧2 +
𝜕4𝑤𝑠𝑡,𝑖

𝜕𝑧4 =
𝑝𝑠𝑡,𝑖

𝐷𝑠𝑡,𝑖
 (5) 

where 𝐷𝑠𝑡,𝑖 =
𝐸𝑡𝑠𝑡,𝑖

3

12(1−𝜈2)
 , is the plate stiffness and 𝑡𝑠𝑡,𝑖 is thickness of the stiffener, 𝐸 is modulus of 

elasticity, 𝜈 is Poisson’s ratio, while 𝑝𝑠𝑡,𝑖 is the load acting perpendicularly on the plate. In the 

actual column buckling problem this load is assumed to be zero, hence the right-hand-side of the 

D.E. is zero.  

 

In order to derive the analytical solution for the critical load, the energy method is adopted: the 

total potential is expressed by some displacement parameters, then the theorem of stationarity of 

potential energy is used to find the equilibrium configuration. As far as the main member is 

concerned, the classic energy/work terms are applied. This means that the methodology followed 

here leads to the classic critical force formula for pure torsional buckling if no transverse stiffeners 

are added. However, the effect of the stiffeners is also considered. This effect is two-fold. The 

direct effect is that, since the stiffener plates are connected to the main member, the stiffeners will 

displace/deform as soon as the main member is displaced/deformed; due to this deformation strain 

energy is accumulated in the stiffeners that energy is to be included in the potential energy 

function. However, there is a second effect, too: the stiffeners modify the longitudinal 

displacement function of the main member. 

 

2.2 Analysis of the stiffeners 

Let us start with the case when the stiffener is connected to the flanges of the member only. Under 

twisting of the member, the attached stiffener is deformed. The 𝑤𝑠𝑡,𝑖 displacement function of a 

stiffener plate should satisfy the differential equation of the plate, see Eq. (5), plus the boundary 

conditions, which are defined differently for each type of stiffener-to-member connection. The 

compatibility conditions in this “flanges-only” case are as follows. 

At 𝑧 =
ℎ𝑠𝑡,𝑖

2
 

 𝑤𝑠𝑡,𝑖 = 𝜃′𝑠𝑖  
ℎ𝑠𝑡,𝑖

2
𝑦, 

𝜕𝑤𝑠𝑡,𝑖

𝜕𝑧
= −𝜃′𝑠𝑖𝑦 (6) 

where: 𝜃′𝑠𝑖 is the first derivative of twisting function with respect to x, at the position 𝑥 = 𝑥𝑠𝑡,𝑖. 

At 𝑧 = −
ℎ𝑠𝑡𝑖

2
  

 𝑤𝑠𝑡,𝑖 = −𝜃′𝑠𝑖  ′
ℎ𝑠𝑡,𝑖

2
𝑦, 

𝜕𝑤𝑠𝑡,𝑖

𝜕𝑧
= −𝜃′𝑠𝑖𝑦 (7) 

The boundary condition for the free edges, i.e. at 𝑦 = ±
𝑏𝑠𝑡,𝑖

2
, are as follows: 

 
𝜕2𝑤𝑠𝑡,𝑖

𝜕2𝑦
= 0 (8) 

The D.E. (5) and the above boundary conditions can be solved analytically, resulting in the 

following displacement function: 

 𝑤𝑠𝑡,𝑖(𝑦, 𝑧) = 𝜃′𝑠𝑖𝑦𝑧 − 𝜃′
𝑠𝑖2𝑦 (

2

ℎ𝑠𝑡,𝑖
2 𝑧3 −

𝑧

2
) (9) 
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For the case when the stiffener is connected to the web of the member only, the displacement 

function can also be found analytically. Without showing the details, the displacement function is 

as follows: 

 𝑤𝑠𝑡,𝑖 = 𝑐𝑖𝑤𝑠𝑡,𝑖1 + (1 − 𝑐𝑖)𝑤𝑠𝑡,𝑖2 (10) 

where:   

 𝑤𝑠𝑡,𝑖1 = 𝜃′𝑠𝑖𝑦𝑧, 𝑤𝑠𝑡,𝑖2 = 𝜃′𝑠𝑖 (𝑦 −
3

𝑏𝑠𝑡,𝑖
𝑦2 +

2

𝑏𝑠𝑡,𝑖
2 𝑦3) 𝑧  (11) 

𝑐𝑖 is a scalar parameter, 

 𝑐𝑖 =
4𝐺𝑏𝑠𝑡,𝑖

2+5𝐸ℎ𝑠𝑡,𝑖
2

24𝐺𝑏𝑠𝑡,𝑖
2+5𝐸ℎ𝑠𝑡,𝑖

2 (12) 

 

For the case when the stiffener is connected both to the flanges and to the web, it can be proved 

that no analytical solution exists, since the boundary and compatibility conditions define a 

singularity point. However, approximate solution is certainly possible. Here the approximate 

function is assumed as a perturbed version of that of the “flanges-only” case, as follows: 

    𝑤𝑠𝑡,𝑖(𝑦, 𝑧) = 𝜃′
𝑠𝑖𝑦𝑧 − 𝜃′

𝑠𝑖2𝑦 (
2

ℎ𝑠𝑡,𝑖
2 𝑧3 −

𝑧

2
) + 𝑓𝑖(𝑦)𝜃′

𝑠𝑖2 (
2

ℎ𝑠𝑡,𝑖
2 𝑧3 −

𝑧

2
) (13)      

where 𝑓𝑖(𝑦) function (i) should be zero at 𝑦 = 0, (ii) should have a unit first derivative at 𝑦 = 0, 

and (iii) should take non-zero values only around 𝑦 = 0, while should take zero values otherwise. 

These conditions are satisfied by the following function:   

 𝑓𝑖(𝑦) = {
𝑦 −

2

𝑏̅𝑠𝑡,𝑖
𝑦2 +

1

𝑏̅𝑠𝑡,𝑖
2 𝑦3  𝑖𝑓   𝑦 ≤ 𝑏̅𝑠𝑡,𝑖

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (14)     

where 𝑏̅𝑠𝑡,𝑖 is a parameter that should somehow be assumed or approximated. (According to the 

experiences from the numerical examples, 𝑏̅𝑠𝑡,𝑖  can be assumed as 0.15𝑏𝑠𝑡,𝑖 for the investigated 

problems). 

 

The described 𝑤𝑠𝑡,𝑖 displacement functions are illustrated in Fig. 2. The deformation in the flanges-

only and web-and-flanges cases are very similar, but not identical: there is some localized waviness 

in the vicinity of the web in the latter case.  

 

 
 

 

web-only flanges-only web-and-flanges 

Figure 2: Stiffener deformations illustration 
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2.3 Critical load for clamped-clamped support case 

In this Section the solution for a member with clamped-clamped supports and with nst identical 

stiffeners is presented. Each stiffener is placed at position 𝑥 = 𝑥𝑠𝑡,𝑖 (𝑖 = 1, … , 𝑛𝑠𝑡,0 ≤ 𝑥𝑠𝑡,𝑖 ≤ 𝐿). 

For this case, the assumed longitudinal twisting displacement function is: 

 𝜃 = 𝜃0
1

2
[1 − cos (

2𝜋𝑥

𝐿
)] (15) 

This function is the well-known solution for the linear buckling of clamped-clamped members 

without stiffeners. Although with the presence of stiffener(s) this longitudinal twisting 

displacement function can be affected, it is also applicable if the stiffeners are relatively weak and 

regularly positioned (as we will see later).  

 

The external potential is the negative of the work done by the loading on the (second-order) 

displacements. Since the only assumed loading is axial, we need the longitudinal second-order 

displacement only, which can be calculated from the second-order strains (i.e., relevant terms of 

the Green-Lagrange strain vector). The applied second-order strain, therefore: 

 𝜀𝑥
𝐼𝐼 =

1

2
((

𝜕𝑣𝜃

𝜕𝑥
)

2

+ (
𝜕𝑤𝜃

𝜕𝑥
)

2

) =
1

2
(

𝜕𝜃

𝜕𝑥
)

2
(𝑧2 + 𝑦2)  (16) 

The external potential: 

 𝛱𝑒𝑥𝑡 = ∬
𝐹

𝐴
𝜀𝑥

𝐼𝐼𝑑𝑥𝑑𝐴 = −
𝐹𝑟0

2

2
∫ (

𝜕𝜃

𝜕𝑥
)

2

𝑑𝑥 == −𝐹𝑟0
2 𝜋2

4𝐿
(𝜃0

2)
𝐿

0
 (17) 

where 𝑟0
2 = ∫

(𝑧2+𝑦2)

𝐴
d𝐴 is the polar radius of gyration of the cross-section, 𝐹 is external axial 

force acting on the member, and A is the cross section area. 

  

The internal potential is the accumulated strain energy. The strain energy in the main member is 

due to Saint-Venant shear strains/stresses, and due to strains/stresses from warping. For the Saint-

Venant strains/stresses: 

 𝛱𝑖𝑛𝑡
𝑆−𝑉 =

1

2
∫ 𝐺𝐼𝑡 (

𝜕𝜃

𝜕𝑥
)

2

𝑑𝑥 = 𝐺𝐼𝑡
𝜋

12𝐿
(3𝜋𝜃0

2)
𝐿

0
  (18) 

where: G is the shear modulus, 𝐼𝑡 is the torsional constant. For the warping strains/stresses: 

 𝛱𝑖𝑛𝑡
𝑤𝑎𝑟𝑝

=
1

2
∫ 𝐸𝐼𝜔 (

𝜕2𝜃

𝜕𝑥2)
2

𝑑𝑥
𝐿

0
= 𝐸𝐼𝜔

𝜋3

12𝐿3
(12𝜋𝜃0

2)  (19) 

where: E is the modulus of elasticity, 𝐼𝜔 is the warping constant.  

 

The strain energy in a stiffener plate can be calculated from the curvatures and stress resultants 

(i.e., moments), as follows. 

 𝛱𝑖𝑛𝑡,𝑖
𝑠𝑡 = ∫

1

2
(𝑀𝑠𝑡,𝑖,𝑦𝑦𝜅𝑠𝑡,𝑖,𝑦𝑦 + 𝑀𝑠𝑡,𝑖,𝑦𝑧𝜅𝑠𝑡,𝑖,𝑦𝑧 + 𝑀𝑠𝑡,𝑖,𝑧𝑧𝜅𝑠𝑡,𝑖,𝑧𝑧) 𝑑𝑦 𝑑𝑧

𝛺𝑆,𝑖
 (20) 

with: 

  𝜅𝑠𝑡,𝑖,𝑦𝑦 = −
𝜕2𝑤𝑠𝑡,𝑖

𝜕𝑦2 , 𝜅𝑠𝑡,𝑖,𝑧𝑧 = −
𝜕2𝑤𝑠𝑡,𝑖

𝜕𝑧2 , 𝜅𝑠𝑡,𝑖,𝑦𝑧 = −2
𝜕2𝑤𝑠𝑡,𝑖

𝜕𝑦𝜕𝑧
 (21) 
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and the stress resultants are as follows: 

 𝑀𝑠𝑡,𝑖,𝑦𝑦 = 𝐷𝑠𝑡,𝑖(𝜅𝑠𝑡,𝑖,𝑦𝑦 + 𝜈𝑖 𝜅𝑠𝑡,𝑖,𝑧𝑧)  

 𝑀𝑠𝑡,𝑖,𝑧𝑧 = 𝐷𝑠𝑡,𝑖(𝜅𝑠𝑡,𝑖,𝑧𝑧 + 𝜈𝑖𝜅𝑠𝑡,𝑖,𝑦𝑦) (22) 

 𝑀𝑠𝑡,𝑖,𝑦𝑧 = 𝐷𝑠𝑡,𝑖(1 − 𝜈𝑖)𝜅𝑠𝑡,𝑖,𝑦𝑧   

where 𝐷𝑠𝑡,𝑖 is the plate stiffness, given by Eq. (5), and 𝜈𝑖 is the Poisson’s ratio for the i-th stiffener. 

At 𝑥 = 𝑥𝑠𝑡,𝑖, the strain energy in a stiffener plate is expressed by substituting the displacement 

function 𝑤𝑠𝑡,𝑖  into Eqs. (20-22). Different stiffener-to-member connection results in different 

strain energy, however, it can be written with a general equation as follow: 

 𝛱𝑖𝑛𝑡,𝑖
𝑠𝑡 =

𝜋2

𝐿2 (𝜃0)2 𝑠𝑖𝑛2 (
2𝜋

𝐿
𝑥𝑠𝑡,𝑖) 𝐷𝑠𝑡,𝑖𝐶𝑠𝑡,𝑖      (23)  

with: 

  𝐶𝑠𝑡,𝑖 =
𝑏𝑠𝑡,𝑖(10𝑏𝑠𝑡,𝑖

2− 9ℎ𝑠𝑡,𝑖
2𝜈 + 9ℎ𝑠𝑡,𝑖

2)

5ℎ𝑠𝑡,𝑖
  (24) 

 𝐶𝑠𝑡,𝑖  = ℎ𝑠𝑡,𝑖
2  [

𝑏𝑠𝑡,𝑖

2𝑏𝑠𝑡𝑖
(𝑐𝑖 − 1)2 −

𝑏𝑠𝑡,𝑖

5ℎ𝑠𝑡,𝑖
(1 − 𝜈)(− 6𝑐𝑖

2 + 2𝑐𝑖 − 1)], 𝑐𝑖 see Eq. (12) (25) 

 𝐶𝑠𝑡,𝑖 =
𝑏𝑠𝑡,𝑖(10𝑏𝑠𝑡,𝑖

2− 9ℎ𝑠𝑡,𝑖
2𝜈 + 9ℎ𝑠𝑡,𝑖

2)

5ℎ𝑠𝑡𝑖
+

8

525

30𝑏̅𝑠𝑡,𝑖
4

+ 14𝑏̅𝑠𝑡,𝑖
2

ℎ𝑠𝑡,𝑖
2 + 5ℎ𝑠𝑡,𝑖

4

𝑏̅𝑠𝑡,𝑖ℎ𝑠𝑡,𝑖
 , (26) 

for “flanges-only”, “web-only”, and “web-and-flanges” cases, respectively. 

 

To obtain the accumulated strain energy, we need to summarize the above energy terms: 

 𝛱𝑖𝑛𝑡 = 𝛱𝑖𝑛𝑡
𝑆−𝑉 + 𝛱𝑖𝑛𝑡

𝑤𝑎𝑟𝑝
+ ∑ 𝛱𝑖𝑛𝑡,𝑖

𝑠𝑡𝑛𝑠𝑡
1  (27) 

The total potential function of the whole member is finally: 

 𝛱 = 𝐺𝐼𝑡
𝜋

12𝐿
3𝜋𝜃0

2 + 𝐸𝐼𝜔
𝜋3

12𝐿3 12𝜋𝜃0
2 +

𝜋2

𝐿2 𝜃0
2𝐷𝑠𝑡,𝑖𝐶𝑠𝑡,𝑖 ∑ sin2 (

2𝜋

𝐿
𝑥𝑠𝑡,𝑖) 

𝑛𝑠𝑡
1 − 𝐹𝑟0

2 𝜋2

4𝐿
𝜃0

2 

  (28) 

The minimum of the potential energy leads to a simple linear equation for F as follows: 

 
𝜕𝛱

𝜕𝜃0
= 𝐺𝐼𝑡

𝜋

2𝐿
𝜋𝜃0 + 𝐸𝐼𝜔

𝜋3

𝐿3 2𝜋𝜃0 + 𝐷𝑠𝑡,𝑖𝐶𝑠𝑡,𝑖
𝜋2

𝐿2 2𝜃0 ∑ 𝑠𝑖𝑛2 (
2𝜋

𝐿
𝑥𝑠𝑡,𝑖) −

𝑛𝑠𝑡
1 𝐹𝑟0

2 𝜋2

2𝐿
𝜃0 = 0 (29) 

From Eq. (29) the critical force can be expressed as follows: 

 𝐹 =
1

𝑟0
2 (𝐺𝐼𝑡 + 4𝐸𝐼𝜔

𝜋2

𝐿2 +
4

𝐿
𝐷𝑠𝑡𝐶𝑠𝑡 ∑ sin2 (

2𝜋

𝐿
𝑥𝑠𝑡,𝑖)

𝑛𝑠𝑡
1 ) (30) 

Eq. (30) indicates that there is an additional term in the critical force formula due to the presence 

of the stiffeners. The effect of the stiffeners is reflected in and only in this third term. This 

additional term can be interpreted as a weighted sum, since the stiffeners are identical, the 

sin2 (
2𝜋

𝐿
𝑥𝑠𝑡,𝑖) terms are the weights. They are related to the first derivative of the twist function, 

since ∑ sin2 (
2𝜋

𝐿
𝑥𝑠𝑡,𝑖)

𝑛𝑠𝑡
1 =  

𝐿2

𝜋2

1

𝜃0
∑ (𝜃′𝑠𝑖)2𝑛𝑠𝑡

1 . Thus, the larger the value of the first derivative of 

the twisting rotation function, the more effective the stiffener against torsion. It is also to highlight 

that (a) the Saint-Venant torsional term is independent of the length, (b) the warping term is 
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inversely proportional to 𝐿2, and (c) the term due to the stiffeners is inversely proportional to L. 

Thus, the effect of stiffeners cannot properly be represented by neither a modified 𝐼𝑡 , nor a 

modified 𝐼𝜔. 

 

2.4 Critical load for pinned-pinned member with end-plates 

In this Section the solution for a member with pinned-pinned supports d with two end-plates is 

summarized. Thus, there are two stiffeners, at 𝑥1 = 0 and 𝑥2 = 𝐿 and for sake of simplicity the 

two end-plates are identical. The solution will demonstrate the effect of the stiffeners on the 

twisting displacement function of the whole member. If the end-plates are very thin then the 

behavior of the column will approximate a classic Euler column, and if the end-plates are very 

thick then the behavior of the member will be similar to that of a clamped-clamped column. In the 

first case the displacement function (for the first buckling mode) would be a half sine-wave, while 

on the second case the displacement function would be a cosine function, just as in Eq. (15). It can 

be assumed that, with the presence of end-plates, the twisting displacement function is a linear 

combination of these two functions, as follows: 

 𝜃 = 𝜃0,1 𝑠𝑖𝑛 (
𝜋𝑥

𝐿
) + 𝜃0,2

1

2
[1 − 𝑐𝑜𝑠 (

2𝜋𝑥

𝐿
)] (31) 

The calculation process, presented in the previous case, must be repeated. Without showing the 

details of the derivations, the total potential energy function is expressed by two displacement 

parameters 𝜃0,1 and 𝜃0,2, as follows: 

𝛱 =  𝐺𝐼𝑡
𝜋

12𝐿
(3𝜋𝜃0,1

2 + 16𝜃0,1𝜃0,2 + 3𝜋𝜃0,2
2) + 𝐸𝐼𝜔

𝜋3

12𝐿3
(3𝜋𝜃0,1

2 + 16𝜃0,1𝜃0,2 + 12𝜋𝜃0,2
2) +

                              +2
𝜋2

𝐿2 𝜃0,1
2𝐷𝑠𝑡𝐶𝑠𝑡  − 𝐹𝑟0

2 𝜋

12𝐿
(3𝜋𝜃0,1

2 + 16𝜃0,1𝜃0,2 + 3𝜋𝜃0,2
2) (32) 

In equilibrium the total potential is stationary, which leads to the following equation: 

 [
3𝜋 (𝐺𝐼𝑡 + 𝐸𝐼𝜔

𝜋2

𝐿2 +
8𝐷𝑠𝑡𝐶𝑠𝑡

𝐿
− 𝐹𝑟0

2) 8 (𝐺𝐼𝑡 + 𝐸𝐼𝜔
𝜋2

𝐿2 − 𝐹𝑟0
2)

8 (𝐺𝐼𝑡 + 𝐸𝐼𝜔
𝜋2

𝐿2 − 𝐹𝑟0
2) 3𝜋 (𝐺𝐼𝑡 + 4𝐸𝐼𝜔

𝜋2

𝐿2 − 𝐹𝑟0
2)

] [
𝜃0,1

𝜃0,2
] = [

0
0

] (33) 

The above equation can also be written as: 

 [
3𝜋(𝐹1 − 𝐹) 8(𝐹12 − 𝐹)

8(𝐹12 − 𝐹) 3𝜋(𝐹2 − 𝐹)
] [

𝜃0,1

𝜃0,2
] = [

0
0

] (34) 

where 𝐹1 is the critical force that belongs to a displacement function 𝜃1 = 𝜃0,1 sin (
𝜋𝑥

𝐿
), and 𝐹2 is 

the critical force that belongs to a displacement function 𝜃2 = 𝜃0,2
1

2
[1 − cos (

2𝜋𝑥

𝐿
)]. In this 

specific example 𝐹12 is equal to the critical force of a pinned-pinned column without stiffeners. 

The coefficient matrix of Eq. (34) must be singular, which leads to a quadratic equation as follows:   

 𝐹2(9𝜋2 − 64) − 𝐹(9𝜋2𝐹1 + 9𝜋2𝐹2 − 128𝐹12) + 9𝜋2𝐹1𝐹2 − 64𝐹12
2 = 0 (35) 

From Eq. (35) F can be calculated. It can be proved that Eq. (35) has two positive solutions. From 

practical point of view the smaller value is the most critical one. This critical value is dependent 

on the rigidity of the end-plates, hence the buckled shape of the main member is also dependent 

on the rigidity of the end-plates. 
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3. The constrained finite element method with extension for transverse plates 

The constrained finite element method (cFEM) is essentially a shell finite element method, but 

with an ability to perform modal decomposition, see e.g. Ádány (2018), and Ádány et al. (2018). 

Separation of the different modes is controlled by mechanical criteria. If these criteria are enforced, 

the model is said to be constrained. Depending on the criteria the member can be constrained into 

e.g., global distortional, local, etc. deformation modes. The criteria can be expressed by using so-

called constraint matrices which are denoted, in general, by R. The application of the constraint 

matrix enforces a certain relationship among various nodal degrees of freedom, specific to the 

given ‘M’ deformation space. This essentially means a reduction of the effective degrees of 

freedom. Mathematically, the d displacement vector is expressed as follows: 

 𝒅 = 𝑹𝑴𝒅𝑴  (36) 

where RM is a so-called constraint matrix to the ‘M’ space, and dM is the reduced displacement 

vector. Since the dM reduced displacement vector has fewer elements than the original d vector. 

 

If the member is supplemented by transverse plates, cFEM can still be used, see Trung and Ádány 

(2019). Two domains can be distinguished, depending on whether the element is part of the main 

member (domain ‘m’) or the stiffener (domain ‘s’), see Fig. 3. Similarly, the nodes can be 

separated, by assigning all the nodes of the main member to the ‘m’ group, while the remaining 

nodes to the ‘s’ group.  

 
Figure 3: Thin-walled member with transverse plates 

 

The key idea here is that the constraining should be done on the nodes in the ‘m’ domain by 

following the classic cFEM approach. However, if the main member deforms, the transverse plate 

elements are deformed accordingly. This deformation can be calculated by using DOF 

condensation. Since the column vectors of 𝐑𝐌 are the modal displacement vectors of the main 

member, the compatible modal displacement vectors of the ‘s’ nodes ( 𝐑𝐒 ) must satisfy the 

following equation: 

 [
𝑲𝒆,𝒎𝒎 𝑲𝒆,𝒎𝒔

𝑲𝒆,𝒔𝒎 𝑲𝒆,𝒔𝒔
] [

𝑹𝑴

𝑹𝑺
] = [

𝒇𝒎

𝒇𝒔
] (37) 

From the second equation of Eq. (37) 𝐑𝐒 can be expressed (formally) as: 

 𝑹𝑺 = (𝑲𝒆,𝒔𝒔)−𝟏(𝒇𝒔 − 𝑲𝒆,𝒔𝒎𝑹𝑴) (38) 
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However, additional nodal displacements in the ‘s’ domain can be allowed, too. In this case Eq. 

(36) can be extended as follows: 

 [
𝒅𝒎

𝒅𝒔
] = [

𝑹𝑴 𝟎
𝑹𝑺 𝑰

] [
𝒅𝑴

𝒅̅𝒔
] (39) 

where 𝐝𝐦 is the nodal displacement vector for the ‘m’ domain, 𝐝𝐬 is the nodal displacement vector 

for the ‘s’ domain, 𝐝𝐌 and 𝐑𝐌 are the same arrays as in Eq. (36), I is an identity matrix, and 𝐑𝐒 is 

expressed by Eq. (38). It must be underlined here that 𝐝̅
𝐬 is that part of the displacement in the ‘s’ 

domain which is not derived from the displacements of the main member. The total displacement 

in the ‘s’ domain is therefore the sum of two parts: 𝐑𝐒𝐝𝐌 comes from the displacement of the main 

member, and 𝐝̅
𝐬 is the displacement which is independent of the main member deformation.  

 

4. Numerical examples 

In this Section three numerical examples on the torsional buckling of I-section members are 

presented. The critical buckling loads are calculated using the analytical formulae presented in 

Section 2. Then the results are compared to cFEM solutions and also to shell finite element solution 

using the commercial Ansys software. 

 
4.1 Example #1: one single stiffener  

In this example a clamped-clamped I-section column member is considered with one single 

stiffener. The cross-section is similar to an HEA300 hot-rolled steel profile. More specifically the 

cross-section depth is h=300 mm, the width is b=300 mm, the flange thickness is tf=20.5 mm, the 

web thickness is tw=11.5 mm. (The depth and width values are interpreted for the midline of the 

cross-section.) The material is isotropic linearly elastic steel, with E=210000 MPa and ν=0.3. The 

stiffener width and height is equal to the width and depth of the cross-section. The tst stiffener 

thickness varies between 0.5tw and 5tw. Its material is identical to that of the main member. The 

position of the stiffener varies along the length. Two concentric axial compressive forces are 

applied at the member ends, equal in magnitude but opposite in direction. The forces are placed 

onto the member as distributed loads uniformly distributed over the cross-section. 

 

In the Ansys model SHELL63 elements are adopted, since this element is based on the Kirchhoff-

Love thin plate theory, similarly to the presented analytical solution as well as to cFEM. The sizes 

of the shell elements were kept approx. 50 mm for both the cFEM and the Ansys model. The 

clamped-clamped supports are realized so that they only prevent rotations and transverse 

translations, but the longitudinal translations at the supports are left free.  

 

There is a well-known phenomenon in cFEM: critical loads calculated to global buckling by 

constrained buckling analysis are bigger than the analytical results. This is due to the restrained 

transverse deformations, as explained in detail in Ádány and Visy (2012). A possible way to 

eliminate this effect is to set the Poisson’s ratio to zero. Thus, ν=0.0 is used here for the main 

member. However, ν=0.3 is applied for the stiffener. 

 

In Table 1 the presented results belong to L=8 m, stiffener position xs=2000 mm, and tst is either 

tw or 2tw. The results are shown for the three types of stiffener-to-member connection. The cFEM 

results show practically precise agreement with the analytical results in all the cases, the difference 

being less than 1%. The analysis results clearly show the importance of the stiffener-to-member 
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connection. The connection to the flanges is much more efficient than the connection to the web. 

The “web-and-flanges” type connection leads to the largest critical load values, though these 

critical load values are only 10% larger than those in the “flanges-only” case, i.e., the connection 

to the flanges seem to be responsible for about 90% of the increasing of the critical load due to the 

stiffeners. Based on this observation, and considering that the analytical solution for the “web-and-

flanges” type is approximate, in all the following examples the “flanges-only” connection type 

will be used. 

 

Table 2 illustrates the effect of the stiffener position on the critical load. Results are shown for two 

tst values. The values in the table are the critical stress increments (in N/mm2) caused by the 

stiffener, with respect to the critical stresses without the stiffener (1064.1 N/mm2, 1051.9 N/mm2, 

and 1065.6 N/mm2 from the analytical, Ansys, and cFEM calculations, respectively, see Table 1). 

It can be observed that the tendencies of the results from all the analyses are the same, in the case 

of the thinner stiffener even the numerical values are fairly similar. According to the analytical 

solution, see Eq (30), the effect of the stiffener position is included only in the sinusoidal term, so 

the increments in any row of Table 2 should be proportional to the corresponding (sin)2 values as 

follows:  

sin2 (
𝜋

4
) =

1

2
  ∶   sin2 (

2𝜋

4
) = 1 ∶  sin2 (

3𝜋

4
) =

1

2
  ∶   sin2 (

4𝜋

4
) = 0  

Indeed, the increments in Table 2 follow precisely this pattern in the case of the analytical and the 

cFEM calculations, and almost precisely in the case of the shell FEM calculation, too. 

 

Table 1: Critical stresses1 with one stiffener, L=8 m, xs=2 m 

  no stiffener web-only flanges-only web-and-flanges 

tst = tw analytical 1064.3 1065.5 1075.2 1076.3 

tst = tw Ansys 1051.9 1052.5 1060.3 1060.7 
tst = tw cFEM 1065.6 1066.7 1076.4 1077.3 

tst = 2tw analytical 1064.3 1073.3 1151.2 1160.0 

tst = 2tw Ansys 1051.9 1055.3 1093.4 1093.8 

tst = 2tw cFEM 1065.6 1074.1 1144.8 1150.7 

 

Table 2: Critical stress increment2 due to one stiffener, L=8 m, flanges-only connection 

  1000mm 2000mm 3000mm 4000mm 

tst = tw analytical 5.4 10.9 5.4 0.0 

tst = tw Ansys 4.2 8.4 4.2 0.0 

tst = tw cFEM 5.3 10.8 5.4 0.0 
tst = 2tw analytical 43.4 86.8 43.4 0.0 

tst = 2tw Ansys 21.1 42.7 21.2 0.5 

tst = 2tw cFEM 37.0 79.2 37.7 0.0 

 

In Table 3 the effect of the member length on the critical load is illustrated. The analyzed members 

have one stiffener at x=0.25L, and tst=tw. The considered lengths are large enough, which is 

necessary to avoid the influence of local deformations in the Ansys-FEM results. If the increment 

critical loads are plotted with respect to the member length, the result is a hyperbolic curve, see 

Fig. 4 (left); and if a doubly logarithmic scale is applied, the curve is a straight line with 45 deg 

                                                
1 Critical stresses unit is [N/mm2]. 
2 Critical stresses increment unit is [N/mm2]. 
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inclination, see Fig. 4 (right).  This observation is fully supported by the analytical solution, given 

by Eq. (30): the increment is proportional to the inverse of the member length.  

 

Table 3: Critical stresses with one stiffener, tst=tw, xs=0.25L, flanges-only connection 

  6m 8 m 10m 12m 16m 

no stiffener analytical 1594.2 1064.3 819.1 685.9 553.4 

no stiffener Ansys 1561.3 1052.4 812.5 681.5 551.0 

no stiffener cFEM 1596.1 1065.6 820.1 686.7 554.1 

with stiffener analytical 1608.7 1075.2 827.8 693.1 558.8 
with stiffener Ansys 1573.0 1061.0 819.3 687.2 555.4 

with stiffener cFEM 1610.4 1076.4 828.7 693.9 559.4 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: Critical stress increments due to one stiffener, tst=tw, xs=0.25L, flanges-only connection 

 

In all the above cases the cFEM and the analytical results are in strong agreement with each other. 

The Ansys results show a systematic difference, though the tendencies are the same. The slightly 

different numerical results from the Ansys analyses are most surely due to the fact that in both the 

cFEM and the analytical solution the cross-sections are truly rigid, i.e., only rigid-body cross-

section displacements are allowed, while the Ansys model is unconstrained, i.e., small local 

flexural deformations in the plate elements, and/or transverse extensions, and/or membrane shear 

deformations are allowed and do occur. The very good agreement of the cFEM and analytical 

results seem to be universal, at least if the stiffeners are thin enough. For thicker stiffeners larger 

differences might exist, discussed as follows. 

 

In Table 4 the effect of the stiffeners thickness is demonstrated. When the stiffener is relatively 

thin (𝑡𝑠𝑡/𝑡𝑤 ≤ 2), the cFEM results are nearly coincidental with the analytical ones. However, if 

the stiffener thickness is increasing, the difference between the cFEM and the analytical solutions 

is increasing (see e.g. 𝑡𝑠𝑡/𝑡𝑤 = 5). This observation can be explained by the fact that the twisting 

displacement function is fixed in the analytical solution (in this example: a cosine wave), but can 

be arbitrary in the cFEM. This observation also proves the general conclusion from Section 2.4: 

the presence of the stiffeners has an effect on the longitudinal distribution of the twisting 

displacement of the main member, too. As Fig. 5 shows, the tendency is clear: the stronger the 

stiffener, the stronger its effect on the main member’s displacements.  
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4.2 Example #2: multiple stiffeners  

In this Example #2 the problem is essentially identical to that of Example #1, but instead of one 

single stiffener, there are multiple stiffeners which are equally spaced along the length of the 8 m 

member. The analysis results are summarized in Fig. 6.  

 

Table 4: Critical stress increments due to one stiffener, L=8 m, xs=2 m, flanges-only connection 

 tst/tw=0.5 tst/tw=1 tst/tw=1.5 tst/tw=2 tst/tw=5 

analytical 1.357 10.85 36.63 86.82 1357 

Ansys 0.958 8.447 23.06 41.53 244.3 

cFEM 1.362 10.78 35.28 79.21 434.1 

 

    
tst/tw=0.5 tst/tw=1 tst/tw=2 tst/tw=5 

Figure 5: Constrained torsional buckling displacement shapes, L=8 m, 

  

Figure 6: Critical stresses in the function of the number of stiffeners, L=8 m 

 

The critical load (or load increment) is linearly changing with the number of stiffeners, which can 

be proved mathematically by the analytical formulae. The linearly increasing tendency is clearly 

observable from the Ansys-FEM results and cFEM results, too. (It is to note that in certain cases 

it is not possible to find a pure torsional mode in the Ansys-FEM solution, due to the large number 
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of buckling modes with lower critical load values. This is the situation, for example, with the 8-

m-long column having more than 10 stiffeners with tst=5tw.) The plots also demonstrate what has 

already been observed in the previous example: with relatively thin stiffener, the cFEM and 

analytical results are nearly coincident, however, the thicker the stiffeners are, the larger the 

difference is between the predictions from the various methods. In the case of ordinary FEM it can 

be observed that thick stiffeners generate waviness in the flanges (see Fig. 7), which means that 

the torsional buckling is coupled with some local buckling; that explains the significant difference 

between ordinary FEM and the other methods. In the case of cFEM the local deformations are 

eliminated by the constraining, still, the buckled shape from cFEM can be different from that of 

the analytical assumption: unlike in analytical solution, there is no certain pre-defined twisting 

displacement function in cFEM, which explains the differences between the cFEM and the 

analytical critical load values. 

 

4.3 Example #3: pinned-pinned member, two end-plates 

In this Example #3 the problem is similar to that of Example #1: the cross-section and material are 

the same, but now the end supports are pinned and there are end-plates at both member ends (and 

no further stiffeners). Two different member lengths are analyzed, while the 𝑡𝑠𝑡/𝑡𝑤 ratio varies 

from 0.5 to 20. The results are summarized in Fig. 8. In the plot the critical stresses are presented 

(for two member lengths) in the function of the end-plate thickness. The first observation is that 

the critical load is bounded, and the boundary is dependent on the member length. Indeed, the 

explanation of this observation is presented in Section 2, where the twisting displacement function 

(see Eq. (31)) for the analytical derivation is introduced. When the end-plates are very thin, the 

member behaves as a member without end-plates; the twisting function is a half sine-wave. The 

extremely thick end-plate works as a clamped support; the twisting function is a cosine function 

(as in Eq (15)). Between the ‘very thin’ and ‘extremely thick’ situations there is a gradual change 

of the twisting function, which is visible by the buckled shapes, see Fig. 9. The analysis clearly 

shows a discrepancy between the Ansys results and the results from the other two methods; the 

discrepancy is caused by the various non-global deformations in the Ansys solution. At the same 

time, it is remarkable that, despite the end-plate thickness range is extremely wide, the cFEM and 

the analytical solutions are practically identical for both member length. This means that the 

assumed twisting function (Eq. 31) in Section 2.4 correctly captures the pure torsional buckling 

behavior, hence the analytical solution of Eq. (35) can be applied for a wide range of members 

with end-plates.  

  
tst/tw=0.5 tst/tw=5 

Figure 7: Buckling shapes, L=8 m, 6 stiffeners 
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Figure 8: Critical stresses, pinned member with two end-plates, cFEM, Ansys FEM and analytical solutions 

 

    
tst/tw=0.5 tst/tw=2 tst/tw=4 tst/tw=10 

Figure 9: cFEM buckling displacement shapes, L=8 m, flanges-only connection 

 

5. Summary 

In this paper the effect of transverse plate elements (referred also simply as “stiffeners”) on the 

torsional buckling of the doubly symmetrical I section columns is discussed. Closed-form 

analytical solutions are derived for the critical force by using the energy method. Several numerical 

examples are presented in which the analytical results are compared to the results from shell finite 

element linear buckling analyses. The shell finite element results are obtained by the commercial 

Ansys software, as well as by the specific constrained finite element method (cFEM) in which the 

cross-section deformations have been eliminated. The comparison shows practically the same 

tendencies in all the three methods. Particularly, the cFEM and the analytical results are coincident 

if the stiffeners are weak. In the case of stronger stiffeners the analytical solution may overestimate 

the critical force. The critical loads by an ordinary shell FE analysis are typically lower due to the 

always existing local deformations, which make it practically impossible to precisely calculate 

pure global buckling.  
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The analytical formulae as well as the numerical results show that the transverse plate elements 

have two major effects on the buckling of the member. The direct effect is due to the deformation 

of the stiffeners. The second, indirect effect is that the introduction of stiffeners can (and typically 

do) modify the longitudinal distribution of the twisting rotations of the member which results in 

changing of the critical force. 

 

The direct effect is always associated with the increment of the critical load, which can be 

characterized as follows: (a) it is linearly proportional to the inverse of the length of the member, 

(b) it is proportional to the plate stiffness (of the stiffener), that is highly sensitive to the thickness 

of the stiffener, (c) it is dependent on the stiffener geometry, and strongly influenced by the 

stiffener-to-member connection, and (d) it is also influenced by the position of the stiffener along 

the length of the member, the efficiency being proportional to the value of the first derivative of 

the twisting rotation function of the main member. The indirect effect is primarily dependent on 

the ratio between the stiffness of the member and the stiffness of the stiffeners, but also influenced 

by many other factors, such as the arrangement of the stiffeners, etc.  

 

The presented analytical solutions help to better understand the effect of transverse elements on 

the torsional behavior of thin-walled members. The formulae can further be generalized in certain 

extent, e.g., to analyze lateral-torsional buckling of beams with transverse plate elements. 

However, arbitrary cases seem to be too complicated to be handled by analytical solutions. For 

these cases numerical solutions can be used, most notably the constrained finite element method, 

the applicability of which has been proved by the here presented examples. 
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