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Abstract 

In this paper, a two-node geometrically exact beam finite element developed by the author 

(Gonçalves 2019), which is capable of accounting for Wagner effects, plasticity, geometric 

imperfections and residual stresses, is employed to assess the current Eurocode 3 (CEN 2005) 

provisions for I-section beams susceptible to lateral-torsional buckling and subjected to uniaxial 

or biaxial bending. For uniaxial bending, three support/loading cases are considered: (i) simply 

supported beams under uniform moment, (ii) simply supported beams subjected to a mid-span 

vertical force and (iii) cantilevers subjected to a free end vertical force. Besides I-sections with 

standard height-to-width ratios, wider flange sections are also considered and it is shown that the 

post-buckling behavior of the latter sections is quite different from that of the former ones, 

exhibiting an increase in the load carrying capacity which is not predicted by Eurocode 3. For 

biaxial bending, a standard I section is considered and three support/loading cases are examined: 

(i) simply supported beams under uniform moments, (ii) beams simply supported at one end and 

fixed at the other, subjected to end moments, and (iii) cantilevers subjected to free end forces. For 

these loadings, it is shown that the Eurocode 3 Method 2 interaction formulas can lead to very 

inaccurate estimates of the collapse load, either on the conservative or unconservative side.  

 

 

1. Introduction 

According to the current Eurocode 3 (CEN 2005), for beams susceptible to lateral-torsional (LT) 

buckling, the following equation must be satisfied 

 
𝑀𝑦,𝐸𝑑

𝜒𝐿𝑇𝑀𝑦,𝑅𝑘/𝛾𝑀1
≤ 1, (1) 

 

where  

𝑀𝑦,𝐸𝑑 is the design value of the maximum moment acting in the beam, along the strong axis (𝑦), 

𝑀𝑦,𝑅𝑘 is the cross-section characteristic moment resistance about the same axis, 𝛾𝑀1 is the partial 

factor for resistance of members to instability assessed by member checks (the recommended value 

is 𝛾𝑀1 = 1.0) and 𝜒𝐿𝑇 is the reduction factor for LT buckling. This reduction factor is obtained 
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from the appropriate buckling curve in the code and the LT slenderness is given by 𝜆̅𝐿𝑇 =

√𝑀𝑦,𝑅𝑘/𝑀𝑐𝑟, where 𝑀𝑐𝑟 is the critical buckling moment, obtained from a standard linear stability 

analysis. In the current Eurocode 3 (EC3) version, two methods are provided for the calculation of 

the reduction factor: (i) the “general case” (GC) of clause 6.3.2.2 and (ii) the “special case” (SC) 

of clause 6.3.2.3, which applies to rolled I-sections or equivalent welded sections. For the SC, it is 

possible to modify (increase) the reduction factor obtained from the buckling curves through 

𝜒𝐿𝑇,𝑚𝑜𝑑 = 𝜒𝐿𝑇/𝑓 ≤ 1 , where the modification factor 𝑓  (with 𝑓 ≤ 1 ) is a function of the 

slenderness and the shape of the bending moment diagram between lateral restraints (the maximum 

value equals 𝑓 = 1 and corresponds a uniform moment diagram).  

 

Short after the publication of the current EC3 provisions, several studies assessing the new LT 

rules have been presented (see, e.g., Snijder & Hoenderkamp 2007, Rebelo et al. 2009), showing 

that in some cases fairly large discrepancies between numerical and code resistance values are 

obtained. This led to the proposal of new LT rules for standard sections (e.g., Taras & Greiner 

2010, Kucuckler et al. 2015, Snijder et al. 2018). All these studies involved parametric studies 

based on geometrically and materially non-linear numerical analyses, including geometric 

imperfections and residual stresses (usually designated as “GMNIA”), using refined shell finite 

element models, even for compact cross-sections (see also Snijder et al. 2008, Taras 2016). 

However, if local/distortional buckling is not relevant, beam (one-dimensional) finite elements 

constitute an attractive choice, as they provide sufficiently accurate results with a much lower 

computational cost and, moreover, deal directly with cross-section stress resultants, which are of 

interest for designers. 

 

This paper discusses results concerning the application of the current EC3 provisions for compact 

I-section beams undergoing lateral-torsional buckling and subjected to uniaxial (Section 3) or 

biaxial bending (Section 4). For uniaxial bending, besides I-sections with standard height-to-width 

ratios, wider flange sections are also considered and it is shown that, for the latter, the collapse 

loads can be much higher than those provided by the EC3 buckling curves. For biaxial bending, a 

standard I section is considered and it is demonstrated that the so-called “Method 2” of EC3 can 

provide very inaccurate collapse load estimates (either on the conservative or unconservative side). 

All the non-linear analyses are carried out with a two-node geometrically exact beam finite element 

developed by the author (Gonçalves 2019), which includes plasticity, geometric imperfections and 

residual stresses. This element is briefly described in Section 2. Finally, Section 4 presents the 

concluding remarks. 

 

2. Some notes concerning the beam finite element employed 

The details of the beam element used to obtain the results presented in this paper are provided in 

Gonçalves (2016, 2019). The element is based on the so-called “geometrically exact beam theory”, 

pioneered by Reissner (1972) and Simo (1985), which is based on a kinematic description of the 

cross-section that involves a translation and a true (finite) rotation. The theory has been 

continuously improved to include cross-section deformation, namely torsion-related warping 

(Simo & Vu-Quoc 1991, Gruttmann et al. 2000, Atluri et al. 2001) and many other effects — an 

application to thin-walled deformable cross-sections and a list of other relevant developments is 

provided in Gonçalves et al. (2010). 
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The present element has two nodes and includes torsion-related warping, leading to 7 DOFs per 

node. Wagner effects are included without simplifications, since all terms of the Green-Lagrange 

strains are retained. Reduced (one point) integration along the element length is carried out, to 

avoid locking. The element can account for plasticity and residual stresses. The finite element 

procedure was implemented in MATLAB (2010), with a load/displacement control strategy. 

 

In all the analyses carried out in this work, the beams are discretized with 30 equal length finite 

elements. For the GNIAs (geometric non-linear analyses with imperfections), 3/2 Gauss points are 

considered in each cross-section wall, along the mid-line and through-thickness directions, 

respectively, and the geometric imperfection has the form of a lateral half-wave sinusoid, with 

amplitude 𝑒0. For the GMNIAs (geometric and material non-linear analyses with imperfections), 

an elastic-perfectly plastic material law is employed, with yield stress 𝑓𝑦 = 235 MPa and 11/3 

Gauss points in each wall (mid-line/through-thickness directions), to capture the spreading of 

plasticity accurately. The imperfection amplitude equals 𝑒0 = 𝐿/1000  and the residual stress 

pattern considered is displayed in Fig. 1. 

 

It should be mentioned that, although the load-displacement curves presented in this paper are 

calculated up to large displacements, in some cases these equilibrium paths are not realistic, as 

local buckling is eventually triggered (an effect not captured by the beam finite element) and/or 

serviceability governs. However, these curves are provided because their shape is essential to help 

understanding the non-linear behavior of the beams. 

 

3. Lateral-torsional buckling under uniaxial bending 

This section addresses the LT buckling behavior of steel I-section beams with three 

support/loading cases: 

Case 1 − simply supported beams (standard “fork” supports) under uniform bending; 

Case 2 − simply supported beams acted by a vertical force, applied at the mid-span cross-section 

shear centre; 

Case 3 − cantilevers acted by a vertical force, applied at the free end cross-section shear centre. 

Four cross-sections are considered (see Fig. 1). According to the EC3 cross-section classification, 

sections C1, C3 and C4 are class 1 (local buckling does not affect the formation of a plastic hinge 

with a rotation capacity required in a plastic analysis) and section C2 has a class 2 flange (may 

develop its full plastic moment but has limited rotation capacity). These cross-sections were 

 

 
Figure 1: Cross-section geometries, material properties and residual stresses adopted for the uniaxial bending cases 
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chosen based on their height-to-width and weak-to-strong axes second moments of area (𝐼𝑧/𝐼𝑦) 

ratios: C1 and C2 have standard ratios, whereas sections C3 and C4 are non-standard — in 

particular, 𝐼𝑧/𝐼𝑦 ≈ 1 for section C4. 

 

Fig. 1 also provides the values of the parameter (Pi & Trahair 1992) 

 

𝛽 =
𝑀𝑐𝑟

𝑁𝑆𝐴

𝑀𝑐𝑟
𝐿𝑆𝐴

1

√(1 −
𝐼𝑧

𝐼𝑦
) (1 − (𝐺𝐽 +

𝜋2𝐸𝐼𝜔

𝐿2 ) /2𝐸𝐼𝑦)

, 
(2) 

 

where the superscripts NSA and LSA designate “non-linear” and “linear” stability analyses, 

respectively (the former takes into account pre-buckling deflections), 𝐽 is the St. Venant torsion 

constant, 𝐼𝜔 is the warping constant and 𝐿 is the beam length (the values adopted are also provided 

in the figure). 

 

For I sections, Eq. (2) essentially depends on the 𝐼𝑧/𝐼𝑦 ratio. As this ratio increases, 𝛽 increases 

and the difference between the NSA and LSA critical moment also increases (note that one obtains 

𝛽 = ∞ for 𝐼𝑧 = 𝐼𝑦). Although this equation was derived for simply supported beams (standard 

“fork” supports) subjected to uniform bending, using several simplifying assumptions, such as 

small rotations, small strains and moderate deflections, it is shown in the present paper that it may 

be used to estimate 𝑀𝑐𝑟
𝑁𝑆𝐴 for large pre-buckling displacements and other loading/support cases. 

 

2.1 Case 1: simply supported beams under uniform bending 

The graphs in Fig. 2 plot the GNIA and GMNIA load-displacement curves obtained for Case 1 

and all cross-sections (C1 to C4), for the beam lengths indicated in Table 1 (leading to  
𝜆̅𝐿𝑇 ≈ 1.1, 1.2). In these graphs, the vertical axis is normalized with respect to 𝑀𝑐𝑟

𝑁𝑆𝐴  and the 

horizontal axis is normalized with respect to 𝛼𝐿2𝑀𝑐𝑟
𝑁𝑆𝐴/8𝐸𝐼𝑦, meaning that the mid-span vertical 

displacement in a linear analysis equals 1 when 𝑀 = 𝛼𝑀𝑐𝑟
𝑁𝑆𝐴, where 𝛼 = 4 is simply a scaling 

factor used to improve the visualization of the graphs. Furthermore, Table 1 shows all the relevant 

data, namely the beam lengths considered (as already mentioned), the slenderness values and the 

corresponding GMNIA/EC3 reduction factors. For the latter, buckling curves a and b are employed 

for the GC and SC methods, respectively (these curves will also be used for Cases 2 and 3, 

presented in the next subsections). These results lead to the following conclusions: 

 (i) The load-displacement curves in Fig. 2 show that the GNIA post-buckling stiffness increases 

with 𝐼𝑧/𝐼𝑦, with quite steep paths being obtained for the non-standard sections C3 and C4. 

This post-buckling stiffness is most remarkable for section C4 due to the fact that, for this 

section, the trivial and buckled (twisted) configurations have almost the same bending 

stiffness. 

 (ii) The (negative) slopes of the GMNIA post-peak curves in Fig. 2 are somewhat related to their 

GNIA counterparts: for section C1 the GMNIA path has the most negative slope (its GNIA 

counterpart has the lowest positive stiffness) and, as the section number increases, the 

GMNIA paths become increasingly horizontal (their GNIA counterparts become steeper). 

 (iii) Although not indicated in Table 1, for all cases the finite element 𝑀𝑐𝑟
𝑁𝑆𝐴 value falls within 

0.6% of that obtained with Eq. (2) (these values are calculated by removing imperfections in 
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Figure 2: Uniaxial bending load-displacement plots for Case 1 and the beam lengths in Table 1 

 
Table 1: Comparison between GMNIA and Eurocode 3 reduction factors for the uniaxial bending Case 1 

Section L (m) 𝜆̅𝐿𝑇 𝜒𝐸𝐶3
𝐺𝐶  𝜒𝐸𝐶3

𝑆𝐶  𝜒𝐺𝑀𝑁𝐼𝐴 

C1 4 1.109 0.59 0.63 0.62 

C2 10 1.234 0.51 0.56 0.56 

C3 25 1.233 0.51 0.56 0.68 

C4 25 1.106 0.59 0.63 0.79 

 

  the model and identifying the load at which negative eigenvalues appear in the tangent 

stiffness matrix). This is noteworthy, particularly for section C4, since bifurcation occurs for 

moderate displacements — in this case the mid-span vertical displacement equals 0.117L.  

 (iv) Table 1 shows that the two EC3 methods (GC and SC) yield rather different reduction 

factors. This difference is well-known — see, e.g., Taras & Greiner (2010). 

 (v) For sections C1 and C2, the SC reduction factors are very close to the GMNIA ones. This is 

also expected, given their standard height-to-width proportions and the residual stress pattern 

employed (typical for wide flange rolled sections). 

(vi)  For sections C3 and C4 the EC3 reduction factors are well below the GMNIA ones, 

particularly if the GC is employed, even though the highest buckling curves for each method  

were used. This difference can be attributed to their high elastic post-buckling stiffness and 

the fact that cross-sections with such high 𝐼𝑧/𝐼𝑦 ratios were not considered in the calibration 

of the EC3 buckling curves. 

 

Since the EC3 predictions fall too much on the conservative side for the non-standard cross-

sections, they are further examined by varying the member length. Fig. 3 shows the GMNIA 

reduction factors obtained, as a function of the slenderness (left-side graphs), and the 

corresponding normalized load-displacement curves (right-side graphs). The reduction factors 

were obtained from the first local maximum of each load-displacement curve, even though for the 

longer beams a higher maximum is sometimes achieved at large displacements. These graphs make 

it possible to conclude the following: 
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Figure 3: GMNIA results for the uniaxial bending Case 1 and C3-C4 sections with varying length: reduction factors 

as a function of the slenderness (left) and normalized load-displacement curves (right) 

 

 (i) A comparison between the GMNIA results and the EC3 buckling curves (left-side graphs) 

shows that the collapse loads are generally well above both curves, as previously concluded 

from the results in Table 1. 

 (ii) As the slenderness decreases, the GMNIA results become closer and eventually lower than 

the SC buckling curve. This behavior was also reported by other authors (e.g. Taras &  

Greiner 2010): for uniform bending, GMNIA results with 𝜒𝐿𝑇 < 1  for 𝜆̅𝐿𝑇 < 0.4  are 

obtained, even if strain hardening is included. 

 (iii) For higher 𝜆̅𝐿𝑇 values, the GMNIA results fall above the Euler curve. This behavior was also 

reported for standard cross-sections by Taras (2008) and now it becomes clear that the 

increased load-carrying capacity is more significant as 𝐼𝑧/𝐼𝑦  increases — the reduction 

factors for the C4 beams are higher than for the C3 beams and recall, from Fig. 2, that the 

C4 beam has a much stiffer post-buckling path. However, as can be attested from the load-

displacement paths (right-side graphs), this increase in the load-carrying capacity is 

associated with large displacements, meaning that serviceability will generally by the 
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governing limit state. For instance, for the C3 beam with L = 25 m, in which case 𝜒𝐺𝑀𝑁𝐼𝐴 =
0.68 (and falls slightly above the Euler curve), dividing the maximum moment by 1.5 yields 

109.4 kNm and corresponds to a mid-span vertical displacement of approximately L/50, 

which is excessive for serviceability purposes. 

 (iv) The right-side graphs show that, as the length increases, a post-critical capacity is observed, 

although it involves large displacements. It is also worth remarking that, for the cases with 

significant post-critical capacity, the reduction factor is virtually coincident with the weak-

to-strong axis plastic bending capacity 𝑀𝑧,𝑅𝑘/𝑀𝑦,𝑅𝑘: for section C3 this ratio equals 0.62 

and, for L = 35 m, one obtains exactly 𝜒𝐺𝑀𝑁𝐼𝐴 = 0.62 ; for section C4 one has 

𝑀𝑧,𝑅𝑘/𝑀𝑦,𝑅𝑘  = 0.79 and coincides with the reduction factors obtained for L = 25 and also 

for L = 40 m if it is taken from the absolute maximum in the curve, rather than the first 

critical point. This is a consequence of the particular load case considered (uniform moment), 

since the beam capacity is exhausted once the mid-span cross-section twists 90º and becomes 

subjected to weak axis bending. 

 

2.2 Case 2: simply supported beams under a mid-span point load 

For Case 2, Fig. 4 displays the GNIA and GMNIA load-displacement curves for the beam cross-

sections and lengths given in Table 2. As in Case 1, the vertical axis is normalized with respect to 

𝑀𝑐𝑟
𝑁𝑆𝐴, but the horizontal axis is now normalized with respect to 𝛼𝐿3𝐹𝑐𝑟

𝑁𝑆𝐴/48𝐸𝐼𝑦, so that the mid-

span vertical displacement in a linear analysis equals 1 when 𝐹 = 𝛼𝐹𝑐𝑟
𝑁𝑆𝐴 (𝛼 = 4 is once more 

adopted). These curves are similar to those presented in Fig. 2 and therefore the conclusions are 

also similar — the GNIA post-buckling stiffness increases with 𝐼𝑧/𝐼𝑦 and this behavior is related 

to the corresponding GMNIA post-peak curve slope. However, it is important to note that the 

elastic post-buckling paths for Case 2 are stiffer than those of Case 1. 

 

 
Figure 4: Uniaxial bending load-displacement plots for Case 2 and the beam lengths in Table 2 

 

For the calculation of the EC3 reduction factors in Table 2, curves a/b were once more used for 

the GC/SC, respectively, and the modification factor 𝑓 was employed in both methods, since it 

leads to higher values. Concerning the numerical 𝛽 values presented in this table, a comparison 

with the values in Fig. 1 shows that the differences are below 2%, except for section C4, in which 

case 4% is obtained. This is quite remarkable, given that Eq. (2) was not developed for this load 
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case. It is also worth noting that, for sections C1 and C2, the SC reduction factors are very close 

to the GMNIA ones, as expected (standard-type cross-section height-to-width ratios and residual 

stresses). However, for cross-sections C3 and C4, the EC3 reduction factors are once more below 

the GMNIA ones, particularly if the GC is employed: the 𝜒𝐸𝐶3,𝑚𝑜𝑑
𝑆𝐶  values are approximately 14% 

below the GMNIA results, due to the high elastic post-buckling stiffness exhibited by these beams 

(nevertheless this difference is slightly less than that obtained for Case 1). 

 
Table 2: Comparison between GMNIA and Eurocode 3 reduction factors for the uniaxial bending Case 2 

Section L (m) 𝛽 𝜆̅𝐿𝑇 𝜒𝐸𝐶3,𝑚𝑜𝑑
𝐺𝐶  𝜒𝐸𝐶3,𝑚𝑜𝑑

𝑆𝐶  𝜒𝐺𝑀𝑁𝐼𝐴 

C1 4 1.07 0.953 0.75 0.78 0.77 

C2 10 1.23 1.061 0.66 0.70 0.71 

C3 25 1.60 1.065 0.66 0.70 0.82 

C4 25 3.77 0.955 0.75 0.78 0.90 

 

 
Figure 5: GMNIA results for the uniaxial bending Case 2 and C3-C4 sections with varying length: reduction factors 

as a function of the slenderness (left) and normalized load-displacement curves (right) 
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Fig. 5 shows the buckling behavior of C3 and C4 section beams when the slenderness is varied. 

As for Case 1, the left-side graphs show the GMNIA reduction factors, as a function of the 

slenderness, and the right-side graphs display the corresponding normalized load-displacement 

curves. Once again, the collapse loads were obtained from the first local maximum of each curve, 

the exception being the 55-meter span C4 beam, which does not display a maximum and thus the 

small horizontal plateau was considered to correspond to the collapse load. These results lead to 

the following conclusions: 

 (i) The left-side graphs show once more that the GMNIA results are well above the EC3 curves. 

None of the GMNIA reduction factors are lower than the SC buckling curve, which is in 

contrast with the results obtained for Case 1 (recall the left graphs in Fig. 3). 

 (ii) For the higher slenderness values, the GMNIA results fall once more above the Euler curve. 

This can be related to the 𝐼𝑧/𝐼𝑦 parameter, as section C4 has the highest reduction factors 

and simultaneously the highest elastic post-buckling stiffness. Nevertheless, the load-

displacement curves reveal that the collapse load is associated with large displacements, 

meaning that serviceability will govern. For instance, even for the C3 beam with L = 25 m, 

whose GMNIA collapse load is below the Euler curve, dividing the maximum force by 1.5 

yields 21.1 kN and corresponds to a mid-span displacement of approximately L/67, which is 

excessive for service conditions. 

 (iii) The right-side graphs show that, as the slenderness increases, the moment always increases 

after the first critical point (in contrast with the uniform moment case). This is due to a 

longitudinal displacement of the roller support as the load increases, causing a decrease of 

the maximum moment at mid-span (see the deformed configuration displayed in the bottom-

right graph). 

 

2.3 Case 3: cantilevers subjected to a free end point load 

Finally, Case 3 is analyzed. The GNIA and GMNIA curves for the beam lengths displayed in Table 

3 are shown in Fig. 6.  As in the previous cases, the vertical axis is normalized with respect to 

𝑀𝑐𝑟
𝑁𝑆𝐴 , whereas the horizontal axis is normalized with respect to 𝛼𝐿3𝐹𝑐𝑟

𝑁𝑆𝐴/3𝐸𝐼𝑦  (the free end 

vertical displacement in a linear analysis equals 1 when 𝐹 = 𝛼𝐹𝑐𝑟
𝑁𝑆𝐴 , with 𝛼 = 4). This case 

exhibits the stiffest elastic post-buckling responses, since the moment at the support does not 

increase proportionally to the loading, due to a decrease of the lever arm (i.e., due to the movement 

of the free end section towards the support as the beam bends). As in the previous cases, the GNIA 

post-buckling stiffness increases with 𝐼𝑧/𝐼𝑦 and is related to the corresponding GMNIA post-peak 

curve slope.  

 

Table 3 displays once more the numerical 𝛽 values, as well as the GMNIA and EC3 reduction 

factors. In the calculation of the EC3 values, either 𝑓 = 1 was considered (which is in accordance 

with the code specifications, since both beam ends are not laterally restrained) or the value obtained 

assuming that the ends are restrained was adopted (although this does not comply with the code). 

 

It is once more observed that the 𝛽 parameter values in Table 3 are close to those provided in Fig. 

1, although the differences are in most cases higher than those obtained for Case 2 (see Table 2). 

The values are within 5% of those in Fig. 1, except for section C4, in which case a 17% difference 

is obtained. Despite the differences reported, it can be still argued that, for this particular case, Eq. 

(2) can be used to estimate the critical load accounting for pre-buckling deflections. 
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Figure 6: Uniaxial bending load-displacement plots for Case 3 and the beam lengths in Table 3 

 
Table 3: Comparison between GMNIA and Eurocode 3 reduction factors for the uniaxial bending Case 3 

Section L (m) 𝛽 𝜆̅𝐿𝑇 𝜒𝐸𝐶3
𝐺𝐶  𝜒𝐸𝐶3

𝑆𝐶  𝜒𝐸𝐶3,𝑚𝑜𝑑
𝐺𝐶  𝜒𝐸𝐶3,𝑚𝑜𝑑

𝑆𝐶  𝜒𝐺𝑀𝑁𝐼𝐴 

C1 4 1.04 0.880 0.75 0.77 0.85 0.88 0.90 

C2 10 1.28 0.986 0.68 0.71 0.76 0.80 0.85 

C3 25 1.61 1.061 0.62 0.66 0.70 0.74 0.93 

C4 25 4.33 0.944 0.70 0.73 0.80 0.83 1.00 

 

Concerning the reduction factors provided in Table 3, it is concluded that, without the modification 

factor, the EC3 values are well below the GMNIA ones, even for the SC (about 15% for C1 and 

C2; 28% for C3 and C4). However, the differences are greatly reduced using the modification 

factor — 2.0, 6.0, 20 and 18% for C1 to C4, respectively —, showing that this method could be 

applied to cantilevers. Nevertheless, even with this factor, as in the previous cases, the C3 and C4 

beams exhibit resistances far above those provided by Eurocode 3. In particular, beam C4 sustains 

increasing loads as the displacement increases (thus a reduction factor equal to 1.0 was 

considered), which is related to the fact that this beam exhibits a particularly high elastic post-

buckling stiffness. 

 

As in the previous cases, the buckling behavior of C3 and C4 section beams with varying length 

is investigated in detail. The left-side graphs in Fig. 7 show the variation of the GMNIA reduction 

factors with the slenderness and the corresponding normalized load-displacement curves are 

displayed in the right-side graphs in the figure. For the 12 m long C4 beam, a maximum load is 

not obtained and therefore the corresponding reduction factor is not shown in the left graph. These 

results lead to the following conclusions: 

 (i) The left-side graphs show that the GMNIA reduction factors are well above the EC3 

buckling curves, as previously concluded from the results in Table 3. In comparison with the 

previous Cases 1 and 2, the present Case 3 exhibits the highest reduction factors, with most 

values falling above the Euler curve and very close to 1.0, namely for cross-section C4 (the 

one with the highest 𝐼𝑧/𝐼𝑦 ratio). 
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Figure 7: GMNIA results for the uniaxial bending Case 3 and C3-C4 sections with varying length: reduction factors 

as a function of the slenderness (left) and normalized load-displacement curves (right) 

 

 (ii) Although a very high load-carrying capacity is observed, the collapse loads are attained at 

very large normalized displacements (much higher than those in Figs. 3 and 5). For instance, 

for the C3 beam with 𝐿 = 35 m, the GMNIA maximum load corresponds to a vertical 

displacement equal to 0.157𝐿 =  𝐿/6.36 (see the top right graph in Fig. 7). 

 

3. Lateral-torsional buckling under biaxial bending 

Consider now beams subjected to biaxial bending and failing in LT buckling. In this case the EC3 

beam-column interaction formulas must be employed to check the buckling ultimate limit state. 

Two methods are provided in the code, but only the so-called “Method 2” is analyzed in this paper, 

since it involves much simpler expressions. With this method, the interaction formulas for biaxial 

bending simplify to 

 
𝐶𝑚𝑦𝑀𝑦,𝐸𝑑

𝜒𝐿𝑇𝑀𝑦,𝑝𝑙
+

0.6𝐶𝑚𝑧𝑀𝑧,𝐸𝑑

𝑀𝑧,𝑝𝑙
≤ 1, (3) 
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𝑚𝑖𝑛 (0.6 + 𝜆̅𝑧; 1)𝑀𝑦,𝐸𝑑  

𝜒𝐿𝑇𝑀𝑦,𝑝𝑙
+

𝐶𝑚𝑧𝑀𝑧,𝐸𝑑

𝑀𝑧,𝑝𝑙
≤ 1, (4) 

 

where 𝐶𝑚𝑦, 𝐶𝑚𝑧 ≤ 1.0 are the so-called equivalent uniform moment factors, which depend on the 

shape of the corresponding moment diagram between relevant braced points, and 𝑀𝑝𝑙 = 𝑀𝑅𝑘/𝛾𝑀1. 

It is important to note that both formulas constitute linear interactions and that the second formula 

governs provided that 𝜆̅𝑧 > 0.4 (which is verified in all cases considered in this paper) or that 

𝐶𝑚𝑦 < 0.6 + 𝜆̅𝑧 (if 𝜆̅𝑧 < 0.4). In particular, provided that 𝜆̅𝑧 > 0.4, the second formula yields a 

line that connects the points (𝑀𝑦,𝐸𝑑 = 𝜒𝐿𝑇𝑀𝑦,𝑝𝑙; 𝑀𝑧,𝐸𝑑 = 0) and (𝑀𝑦,𝐸𝑑 = 0; 𝑀𝑧,𝐸𝑑 = 𝑀𝑧,𝑝𝑙/𝐶𝑚𝑧). 

The second point lies outside the cross-section plastic resistance interaction curve if 𝐶𝑚𝑧 < 1.0 

and, for this reason, the code specifies that such check is also required. 

 

In order to assess the performance of the EC3 interaction formulas, the three loading/support cases 

shown in Fig. 8 are examined (although the support conditions are only displayed for the vertical 

plane, they also hold for the horizontal plane). Moreover, in Case 3, the forces are applied at the 

free end cross-section shear centre. The figure also shows the cross-section geometry adopted, 

which corresponds to a standard IPE 200 section without flange-web radii, as well as the material 

properties and the residual stress pattern. It should be noted that this cross-section has a 

height/width ratio equal to 2 and therefore lies precisely at the boundary between bucking curves 

a/b for the GC and b/c for the SC, with the higher (most favorable) curves in each case being 

prescribed by the code. 

 

 
Figure 8: Support/loading cases, cross-section geometry, material properties and residual stresses considered for the 

biaxial bending analyses 

 

First, Fig. 9 presents the GMNIA results for 𝑀𝑧,𝐸𝑑 = 0 (uniaxial bending) in the form of buckling 

curves, as a function of the slenderness 𝜆̅𝐿𝑇 , as well as the EC3 buckling curves (the curves 

obtained using the modification factor 𝑓 are also presented for each case). These results prompt 

the following remarks:  

 (i) The GMNIA reduction factors for Case 1 fall slightly below the EC3 buckling curves, 

particularly the SC buckling curve and low-to-intermediate slenderness values. However, 

recall that hardening is not being considered and that this cross-section lies precisely in the 

border between buckling curves, with the most favorable one being prescribed by the code. 

Moreover, as already mentioned in Section 2.1, a similar behavior was reported by Taras & 

Greiner (2010) for an IPE500 beam, namely when compared with the SC. 

 



 13 

 
Figure 9: GMNIA results for uniaxial bending (𝑀𝑧 = 0), for the cases in Fig. 8 

 

 (ii) The GMNIA results for Cases 2 and 3 fall significantly above the GC curve, but fit rather 

well with the corresponding SC curves. This shows once more that the modification factor 

could be applied to the cantilever case (Case 3). 

 (iii) In accordance with the results presented in the previous Section, the GMNIA reduction 

factors fall above the Euler curve for high slenderness values and this behavior is more 

pronounced for the cantilever case (Case 3). However, it is observed that the GMNIA results 

for Case 2 are very similar to those of the cantilever, most probably due to its statically 

indeterminacy. In these cases serviceability would be the governing limit state. 

 

Next, the biaxial bending for each Case is analyzed in detail. Figs. 10-12 display the normalized 

𝑚𝑦 − 𝑚𝑧 interaction diagrams (with 𝑚𝑖 = 𝑀𝑖,𝐸𝑑/𝑀𝑖,𝑝𝑙) for four slenderness values, obtained from 

(i) GMNIA analyses, (ii) the interaction formula (4), using for the reduction factor 𝜒𝐿𝑇 the values 

obtained from the GMNIA analysis with 𝑀𝑧,𝐸𝑑 = 0 , and (iii) the exact cross-section plastic 

resistance, calculated from the analytical formulas developed by Baptista (2012). Moreover, for 

the slenderness value cases where the reduction factor lies above the Euler curve, a horizontal line 

corresponding to 𝜒𝐿𝑇 = 1/𝜆̅𝐿𝑇
2  (hence 𝑀𝑦,𝐸𝑑 = 𝑀𝑐𝑟) is provided in the graphs. These interaction 

diagrams are calculated for reference moments given by 𝑀̅𝑦 = 𝑀𝑦,𝑝𝑙 sin 𝜃 and 𝑀̅𝑧 = 𝑀𝑧,𝑝𝑙 cos 𝜃, 

with 𝜃 = {90º, 79º, 67.5º, 45º, 22.5º, 11º, 0º}. For each reference moment pair, the maximum 

loading is therefore given by 𝑀𝑦,𝐸𝑑 = Λ𝑀̅𝑦 = Λ𝑀𝑦,𝑝𝑙 sin 𝜃  and 𝑀𝑧,𝐸𝑑 = Λ𝑀̅𝑧 = Λ𝑀𝑧,𝑝𝑙 cos 𝜃 , 

where Λ is the maximum load parameter, obtained from GMNIAs, the EC3 formulas or the cross-

section resistance. This means that the maximum normalized moments are given by 𝑚𝑦 = Λ sin 𝜃 

and 𝑚𝑧 = Λ cos 𝜃, hence tan 𝜃 = 𝑚𝑦/𝑚𝑧. 
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Figure 10: 𝑚𝑦 − 𝑚𝑧 interaction diagrams for Case 1 

 

The interaction diagram for Case 1 is presented in Fig. 10 and leads to the following conclusions: 

 (i) The GMNIA curves exhibit significant “inward” curvatures. This contrasts with the outward 

curvature generally found in the interaction diagrams of members subjected axial force and 

bending moment (see, e.g., Gonçalves & Camotim 2004). However, it is also worth noting 

that, for the intermediate slenderness values (1.05 and 1.60) and 𝜃 = 79º, the GMNIA curves 

show a slight “outward” curvature. 

 (ii) The Eurocode 3 Method 2 formulas yield straight lines and thus, generally, very conservative 

results. Recalling Fig. 9, if the GC was used instead to obtain 𝜒𝐿𝑇 (buckling curve a), the 

results would turn out slightly more conservative, except for 𝜆̅𝐿𝑇 = 0.51, in which case the 

GMNIA result falls below the buckling curves. With the SC (buckling curve b), a better fit 

of the GMNIA results would be obtained.  

 (iii) For the most slender beam (𝜆̅𝐿𝑇 = 2.70), all GMNIA results fall above the 𝑀𝑐𝑟 horizontal 

line except for 𝜃 = 0º (which corresponds to 𝑚𝑦 = 0). This means that, for this case and 

𝜃 ≥ 11º, one could use 𝜒𝐿𝑇 = 1/𝜆̅𝐿𝑇
2  and ignore 𝑀𝑧,𝐸𝑑. 

 

For Case 2, two interaction diagrams are displayed in Fig. 11, which differ only in the 𝐶𝑚 factors 

used in Eqs. (3)-(4): (i) while the left side diagram was obtained with the values prescribed by 

Eurocode 3 for the 𝑀𝑦 and 𝑀𝑧 bending moment diagrams shapes (in this case 𝐶𝑚𝑦 = 𝐶𝑚𝑧 = 0.4), 

(ii) the right side one corresponds to 𝐶𝑚𝑦 = 𝐶𝑚𝑧 = 0.75, which is the value recommended by 

Gonçalves & Camotim (2004) for the in-plane case with 𝑁 + 𝑀𝑦  and this loading/boundary 

conditions. These results prompt the following remarks: 

 (i) As in the previous case, the GMNIA curves exhibit significant inward curvatures and, for 

the intermediate slenderness value (𝜆̅𝐿𝑇 = 1.06) and 𝜃 = 79º, a slight outward curvature is 

observed. It is also worth noting that, for the same slenderness, all the GMNIA curves for 

Case 2 are higher than for Case 1, i.e., Case 2 exhibits a higher resistance with respect to 

Case 1. For instance, for 𝜆̅𝐿𝑇 = 0.51, the GMNIA curve in Fig. 11 (both graphs, obviously)  
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Figure 11: 𝑚𝑦 − 𝑚𝑧 interaction diagrams for Case 2 

 

  coincides with the cross-section interaction, whereas the corresponding GMNIA curve in 

Fig. 10 falls significantly below the cross-section interaction.  

 (ii) As previously pointed out, the Eurocode 3 formulas yield straight lines. For the left graphs, 

this leads to unconservative results, in accordance with what was pointed out by Gonçalves 

& Camotim (2004) for the 𝑁 + 𝑀𝑦 in-plane case. With 𝐶𝑚𝑦 = 𝐶𝑚𝑧 = 0.75 (right graphs), 

much better results are obtained, although excessively on the conservative side in some 

cases. If the GC curve a was used instead to obtain 𝜒𝐿𝑇, the EC3 interaction curves would 

be much lower than those shown in the diagrams. However, this is not the case if the SC 

modified curve b was employed — recall from Fig. 9 that the GMNIA results for Case 2 fall 

well above the GC curve but fit rather well with the SC modified curve, except for the highest 

slenderness. 

(iii)  For 𝜆̅𝐿𝑇 = 1.63, 2.72, some GMNIA results lie above the 𝑀𝑐𝑟 horizontal line, most notably 

for the latter case where, for 𝜃 ≥ 11º, if 𝜒𝐿𝑇 = 1/𝜆̅𝐿𝑇
2  would be used, the effect of 𝑀𝑧,𝐸𝑑 

could be discarded. 

 

Finally, Fig. 12 shows the results for Case 3, where Eqs. (3)-(4) are computed with 𝐶𝑚𝑦 = 𝐶𝑚𝑧 =

0.9, in accordance with EC3. These results lead to the following conclusions: 

 (i) Once again, the GMNIA curves exhibit significant inward curvatures, except for 𝜆̅𝐿𝑇 = 1.06 

and 𝜃 = 79 º, where a slight outward curvature is again observed. For 𝜆̅𝐿𝑇 = 0.50  the 

GMNIA curve falls outside the cross-section interaction, due to the occurrence of large 

displacements which lower the moments at the built-in end (recall from Fig. 9 that, for this 

slenderness, the reduction factor falls above the horizontal plateau). 
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Figure 12: 𝑚𝑦 − 𝑚𝑧 interaction diagrams for Case 3 

 

 (ii) Once more, the Eurocode 3 formulas yield straight lines which are very on the conservative 

side and, if the buckling curves were used instead to obtain 𝜒𝐿𝑇, much more conservative 

results would be obtained (recall Fig. 9). Using the GC curve a to obtain 𝜒𝐿𝑇 would lead to 

much lower EC3 interaction curves, but the SC modified curve b would produce interaction 

curves similar to those in Fig. 12 — recall from Fig. 9 that the GMNIA results for Case 3 

fall well above the GC curve but fit rather well with the SC modified curve, except for the 

highest slenderness. 

 (iii) For the 𝜆̅𝐿𝑇 = 2.69  beams, most GMNIA results lie above the 𝑀𝑐𝑟  horizontal line and, 

again, for these cases if 𝜒𝐿𝑇 = 1/𝜆̅𝐿𝑇
2  would be used, the contribution of 𝑀𝑧,𝐸𝑑  could be 

ignored. 

 

4. Concluding remarks 

This paper presented and discussed results concerning the application of the current Eurocode 3 

provisions for compact I-section beams undergoing lateral-torsional buckling and subjected to 

uniaxial and biaxial bending. In particular, the Eurocode 3 formulas were compared with GMNIA 

(geometrically and materially non-linear numerical analyses, including geometric imperfections 

and residual stresses) results obtained using a geometrically exact beam finite element. This 

element is capable of handling Wagner effects, plasticity, geometric imperfections and residual 

stresses. 

 

For the uniaxial bending case, besides I-sections with standard height-to-width ratios, wider flange 

sections were analyzed and three support/loading cases were considered: (Case 1) simply 

supported beams under uniform moment, (Case 2) simply supported beams subjected to a mid-

span vertical force and (Case 3) cantilevers subjected to a free end vertical force. The following 

conclusions should be highlighted: 

 (i) For all cases, the elastic post-bucking equilibrium paths are very stable. 

 (ii) As the 𝐼𝑧/𝐼𝑦 ratio increases (but 𝐼𝑧/𝐼𝑦 < 1), the critical buckling moment accounting for pre-

buckling deflections becomes increasingly higher than that obtained from a linear stability 
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analysis. For the cases considered in this paper, this increase can be estimated using the 𝛽 

parameter given by Eq. (2), even though it was developed for Case 1. It was also shown that, 

as 𝐼𝑧/𝐼𝑦 increases, the elastic post-buckling paths become stiffer, particularly for cantilevers 

(Case 3).  

 (iii) The GMNIA post-critical path is also related to the 𝐼𝑧/𝐼𝑦 ratio — as this ratio increases, the 

slope of the post-critical path also increases, with the wide flange sections exhibiting the less 

negative slopes (sometimes positive). 

 (iv) A comparison between the GMNIA and the Eurocode 3 buckling resistance values showed 

that, as expected, for the cross-sections with standard height-to-width ratios, the code 

provides accurate resistance values except for Case 3, in which case rather conservative 

values are obtained (but can be minimized using the modification factor). For the cross-

sections with high 𝐼𝑧/𝐼𝑦 ratios, the GMNIA results generally fall well above the Eurocode 3 

values, due to their high post-buckling stiffness. However, these cases are most likely 

governed by the serviceability limit state. 

 

For the biaxial bending case, a standard IPE 200 section was considered and three support/loading 

cases were examined: (Case 1) simply supported beams under uniform moments, (Case 2) beams 

simply supported at one end and fixed at the other, subjected to end moments, and (Case 3) 

cantilevers subjected to free end forces. It was demonstrated that the Eurocode 3 Method 2 

provisions can lead to very inaccurate estimates of the collapse loads, which can be either on the 

conservative or unconservative side. It is also worth remarking that, for high slenderness values, 

the GMNIA ultimate load is significantly above the critical bifurcation load, due to the fact that 

large displacements are involved (again, serviceability is likely to govern). In these cases, if 𝜒𝐿𝑇 =
1/𝜆̅𝐿𝑇

2  is employed, the contribution of 𝑀𝑧,𝐸𝑑 could be ignored. 
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