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Abstract 

This paper proposes a new geometrically exact beam formulation and ensuing finite element 

implementation that can handle naturally curved thin-walled members susceptible to global-

distortional-local cross-section deformation. The configuration of each cross-section is described 

by a position vector, a rotation tensor (parameterized using the so-called rotation vector) and 

arbitrary cross-section deformation modes complying with Kirchhoff’s thin plate assumption, 

meaning that the deformation modes of Generalized Beam Theory can be straightforwardly 

incorporated. The finite element is obtained by interpolating the independent kinematic parameters 

using Hermite cubic polynomials. Besides handling large displacements and finite rotations, 

combined with cross-section deformation, the element is also capable of performing linear stability 

analyses (of curved members). The accuracy and efficiency of the proposed finite element is 

demonstrated through several illustrative numerical examples. For validation and comparison 

purposes, shell finite element model results are provided. 

 

 

1. Introduction 

Most of the current research requiring the computational modeling of thin-walled members 

susceptible to cross-section deformation is shell finite element-based, even though higher-order 

beam theories, such as Generalized Beam Theory (GBT), can be employed with significant 

advantages. However, the application of GBT to naturally curved members is still in its early 

stages. The first linear (first-order) GBT formulation and finite element implementation for 

members with circular axis was developed by Peres et al. (2016), using cylindrical coordinates. 

This formulation was subsequently improved to obtain more rational cross-section deformation 

modes (for curved members) and a mixed displacement-strain finite element was developed (Peres 

et al. 2018a, 2018b, 2020). In spite of the important results achieved — for instance, it was shown 

that complex local-distortional phenomena can occur even in linear problems —, the extension of 

this formulation to the geometrically non-linear case is far from trivial (even to linear stability 

analyses), not to mention the generalization to arbitrary initial configurations. Moreover, it is well 
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known that GBT is not suitable to handle moderate to large displacements (particularly moderate 

rotations), since its kinematic description does not involve true rotations and the bending terms are 

always assumed to be small. 

 

The so-called geometrically exact beam theory is specifically tailored to handle large 

displacements and finite rotations. The concept, pioneered by Reissner (1972) and Simo (1985), 

owes its name to the fact that no geometric simplifications are introduced besides the assumed 

kinematics. This theory (and its finite element implementation) has been continuously improved 

to include cross-section deformation as additional DOFs. Torsion-related warping was first 

included by Simo & Vu-Quoc (1991) and subsequently used by other authors (Gruttmann et al. 

2000, Atluri et al. 2001). Petrov & Géradin (1998) introduced distortional and warping functions 

associated with each of the six classical stress resultants, although not as additional DOFs. Some 

formulations include the torsion-related warping mode but reduce the number of kinematic 

parameters by eliminating bi-shear deformation (Gruttmann et al. 1998) and shear deformation 

(Rizzi & Tatone 1996, Pignataro & Ruta 2002). The co-rotational formulation of Battini & Pacoste 

(2002a, 2002b) allows considering or discarding shear/bi-shear deformation. Klinkel & Govindjee 

(2003) included three warping modes associated to the Saint-Vénant solutions for pure bending 

and torsion. Pimenta & Campello (2003) and Ritto-Corrêa (2004) proposed formulations that allow 

arbitrary cross-section deformation, although none of them has been implemented. The 

consideration of arbitrary cross-section deformation for initially straight geometrically exact thin-

walled beams has been proposed by Gonçalves et al. (2010a, 2011). 

 

In this paper, the geometrically exact thin-walled beam formulation proposed by Gonçalves et al. 

(2010a) is extended to account for initial curved geometries (not a trivial task) and some 

computational aspects are improved. In particular, the derivative of the torsional curvature, which 

is computationally expensive, is not required in the present formulation, meaning that secondary 

warping due to torsion constitutes an independent cross-section DOF. As in the previous 

formulation, arbitrary cross-section in-plane and out-of-plane deformation is allowed, even if 

Kirchhoff’s thin plate assumption is deemed valid. 

 

A finite element is obtained by interpolating directly the independent kinematic parameters using 

Hermite cubic functions and the standard isoparametric concept, meaning that the initial curved 

geometry of the beam is also approximated with cubic functions. The accuracy and efficiency of 

the proposed element are assessed through several illustrative numerical examples. For validation 

and comparison purposes, results obtained with refined shell finite element models are presented. 

 

Concerning the notation, all scalar quantities, including tensor components, are represented by 

italic letters. Vectors, second-order tensors and matrices are identified by bold italic letters. Partial 

scalar derivatives are indicated by subscripts following a comma, e.g., 𝑓,𝑎 = 𝜕𝑓/𝜕𝑎, ⨂ is the 

standard tensorial product, × is the vector cross product, �̃� is the skew-symmetric second-order 

tensor whose axial vector is 𝒂 and the standard Euclidean norm is ‖𝒂‖ = √𝒂 ∙ 𝒂. Finally, a virtual 

variation is denoted by 𝛿 and an incremental/iterative variation is preceded by ∆. 
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2. The thin-walled beam formulation 

The proposed beam formulation relies on three fundamental assumptions: 

 (A1) the wall thickness is small when compared with the cross-section dimensions and is 

constant in each wall; 

 (A2) Kirchhoff’s thin plate assumption holds except for torsion effects; 

 (A3) small strains. 

With respect to an orthonormal direct reference system (𝑋1, 𝑋2, 𝑋3)  with basis vectors 

(𝑬1, 𝑬2, 𝑬3), three beam configurations are defined: (i) the reference (straight) configuration, (ii) 

the initial (curved but undeformed) configuration and (iii) the current (deformed) configuration. 

The relevant vectors for a given point B are displayed in Fig. 1, for the reference and current 

configurations (the initial configuration is just a particular case of the current configuration and, 

therefore, is not shown in the figure). 

 

 
 

Figure 1: Reference and current configurations of a thin-walled beam. 
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At the reference configuration the beam is straight and mapped through 
 

𝑿 = 𝑋3𝑬3 + �̅�𝐴 + 𝑹(𝑋1𝑬1 + 𝑋2𝑬2), (1) 
 

where (i) 𝑋3 ∈ [−1; 1], as in the usual natural coordinates concept, coinciding with the beam 

longitudinal axis, whose intersection with each cross-section defines the arbitrary cross-section 

center C, (ii) �̅�𝐴 is a cross-section vector which references the origin A of each wall mid-line and 

𝑹 is the rotation tensor that rotates the base vectors about A, along  𝑋3, such that 𝑹𝑬1 and 𝑹𝑬2 

define the through-thickness and wall mid-line directions, respectively. 

 

The initial configuration is defined by 
 

𝒙0 = 𝒓0 + 𝚲0𝒍0,

𝒍0 = �̅�𝐴 + 𝑹(𝑋1𝑬1 + 𝑋2𝑬2 + ∑𝑝0
(𝑖)

𝝌(𝑖)

𝐷

𝑖=1

) ,
 (2) 

 

where 𝒓0 = 𝒓0(𝑋3) defines the position of the cross-section center C, 𝚲0 = 𝚲0(𝑋3) is the cross-

section rotation tensor, 𝝌(𝑖) = 𝝌(𝑖)(𝑋1, 𝑋2) are arbitrary cross-section deformation modes, whose 

scalar weight functions 𝑝0
(𝑖)

= 𝑝0
(𝑖)(𝑋3) define their amplitudes along the beam axis, and D is the 

number of deformation modes. It is important to note that the deformation modes co-rotate with 

the cross-section (through the rotation tensor 𝚲0), which means that their ability to describe the 

cross-section configuration is not affected by a finite rotation of the section.  

 

Finally, the current configuration is given by 
 

𝒙 = 𝒓0 + �̂� + �̂�𝚲0𝒍,

𝒍 = �̅�𝐴 + 𝑹(𝑋1𝑬1 + 𝑋2𝑬2 + ∑(𝑝0
(𝑖)

+ �̂�(𝑖))𝝌(𝑖)

𝐷

𝑖=1

) = 𝒍0 + 𝑹∑�̂�(𝑖)𝝌(𝑖)

𝐷

𝑖=1

,
 (3) 

 

where the hat (^) identifies parameters that characterize the kinematics between the initial and 

current configurations and 𝚲 = �̂�𝚲0 is the cross-section rotation tensor between the reference and 

current configurations. 

 

Due to assumptions A1 and A2, the deformation mode functions can be expressed as 
 

 𝝌(𝑖)(𝑋1, 𝑋2) = �̅�(𝑖)(𝑋2) + 𝑋1(𝜓2
(𝑖)(𝑋2)𝑬2 + 𝜓3

(𝑖)(𝑋2)𝑬3), (4) 
 

where �̅�(𝑖)  accounts for membrane-type displacements and 𝑋1𝜓𝑖  allows for a linear through-

thickness variation of the displacements, along the wall mid-line (𝜓2
(𝑖)

) and warping (𝜓3
(𝑖)

) 

directions. This format makes it possible to write, for the current configuration (the initial 

configuration is just a particular case), 
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𝒙 = �̅� + 𝑋1�̂�𝚲0𝑹(𝑬1 + ∑(𝜓2
(𝑖)

𝑬2 + 𝜓3
(𝑖)

𝑬3)

𝐷

𝑖=1

) ,

�̅� = 𝒓0 + �̂� + �̂�𝚲0�̅�,

�̅� = �̅�𝐴 + 𝑹(𝑋2𝑬2 + ∑(𝑝0
(𝑖)

+ �̂�(𝑖))�̅�(𝑖)

𝐷

𝑖=1

) .

 (5) 

 

The Green-Lagrange strains, which ensure capturing Wagner effects, are given by 
 

�̂� =
1

2
(�̂�𝑇�̂� − 𝟏) =

1

2
((𝑭𝑭0

−1)𝑇𝑭𝑭0
−1 − 𝟏) =

1

2
(𝑭0

−𝑇𝑭𝑇𝑭𝑭0
−1 − 𝟏), (6) 

  

where the following deformation gradients are defined 
 

𝑭 =
𝑑𝒙

𝑑𝑿
,       𝑭0 =

𝑑𝒙0

𝑑𝑿
,       �̂� =

𝑑𝒙

𝑑𝒙0
= 𝑭𝑭0

−1. (7) 

 

For the membrane terms, to keep track of the physical meaning of each strain component, the 

membrane deformation tensor is back-rotated to the reference configuration through 
 

𝑬𝑀 = �̌�0
𝑇 �̂�𝑀 �̌�0, (8) 

 

where �̌�0 is a rotation tensor, calculated at each integration point, from the reference to the initial 

configuration, such that �̌�0𝑬1 defines the through-thickness direction (perpendicular to the wall 

mid-surface). If the initial configuration is free from shear and cross-section deformation, one has 

�̌�0 = 𝚲0𝑹. This leads to the membrane deformation tensor 
 

𝑬𝑀 = �̌�0
𝑇 �̂�𝑀�̌�0 =

1

2
(�̌�0

𝑇𝑭0
−𝑇𝑭𝑇𝑭𝑭0

−1�̌�0 − 𝟏) 

                                             =  
1

2
(�̌�0

𝑇𝚲0𝑹𝑮0
−𝑇𝑮𝑇𝑮𝑮0

−1(𝚲0𝑹)𝑇�̌�0 − 𝟏), 
(9) 

 

where the following relations were employed 
 

𝑭 = �̂�𝚲0𝑹∑(𝒈𝑖⨂𝑬𝑖)

3

𝑖=1

= �̂�𝚲0𝑹𝑮,

𝑭0 = 𝚲0𝑹∑(𝒈0𝑖⨂𝑬𝑖)

3

𝑖=1

= 𝚲0𝑹𝑮0,

              (10) 

 

with 
 

𝒈2 = 𝑬2 + ∑(𝑝0
(𝑖)

+ �̂�(𝑖))�̅�,2
(𝑖)

𝐷

𝑖=1

,

𝒈3 = 𝑬3 + 𝚪 + 𝑲 × (𝑹𝑇 �̅�) + ∑(𝑝0,3
(𝑖)

+ �̂�,3
(𝑖))�̅�(𝑖)

𝐷

𝑖=1

,

𝚪 = (𝚲𝑹)𝑇(𝒓0,3 + �̂�,3) − 𝑬3,

𝑲 = axi((𝚲𝑹)𝑇𝚲,3𝑹).  

(11) 
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Furthermore, due to Kirchhoff’s assumption,  
 

‖𝒈1‖ = 1,    𝒈1 ∙ 𝒈2 = 𝒈1 ∙ 𝒈3 = 0 (12) 
 

and, naturally, 𝒈1 does not affect the membrane strains. It should be noted that the strain measures 

𝚪 and 𝑲 quantify the beam axis shear/extension and curvature, respectively (Simo, 1985). 

 

Since the strains are assumed small (assumption A3), the bending terms can be uncoupled from 

the membrane ones and it suffices to subtract the co-rotational (bending) strains between the 

reference/current and reference/initial configurations. Furthermore, according to assumption A2, 

Kirchhoff’s thin-plate assumption is adopted for all deformation modes except the torsion-related 

secondary warping mode (this mode is identified by 𝑖 = 1 and is designated by �̂�𝑡𝜓𝑡3 ). This 

approach differs from that proposed by Gonçalves et al. (2010a), since it uncouples �̂�𝑡 and the 

torsional component of the curvature �̂�3 = 𝐾3 − 𝐾30 , thus avoiding the computation of the 

derivative of this component and its virtual and incremental/iterative variations, which are 

computationally expensive. With these assumptions, the bending strains are given by 
 

𝐸22
𝐵 = −𝑋1 ∑�̂�(𝑖)�̅�1,22

(𝑖)

𝐷

𝑖=1

,

𝐸33
𝐵 = −𝑋1 (𝐾2 − 𝐾20 − �̂�𝑡,3𝜓𝑡3 + ∑�̂�,33

(𝑖)
�̅�1

(𝑖)

𝐷

𝑖=2

) ,

2𝐸13
𝐵 = (�̂�𝑡 − 𝐾3 + 𝐾30)𝜓𝑡3,

2𝐸23
𝐵 = 𝑋1 (𝐾3 − 𝐾30 + �̂�𝑡 − 2∑ �̂�,3

(𝑖)
�̅�1,2

(𝑖)

𝐷

𝑖=2

) .  

(13) 

 

Note that, if null bi-shear due to secondary warping is enforced, as in Gonçalves et al. (2010a), 

then �̂�𝑡 = �̂�3 = 𝐾3 − 𝐾30, leading to 𝐸13
𝐵 = 0 but, on the other hand, the longitudinal strains 𝐸33

𝐵  

become dependent on �̂�3,3, as mentioned above. 

 

The equilibrium equations are obtained from the virtual work principle, written at the reference 

configuration. Using Voigt notation and assuming, for simplicity, that a single concentrated force 

𝑸 is applied at a point of the wall mid-surface, one has 
 

𝛿𝑊 = 𝛿𝑊𝑖𝑛𝑡 + 𝛿𝑊𝑒𝑥𝑡 = 0 ⟺ − ∫ 𝛿𝑬𝑇𝑺 𝐽0𝑑𝑉

𝑉

+ 𝛿�̅�𝑇𝑸 = 0, (14) 

 

where 𝑉 is the beam volume at the reference configuration, 𝐽0 = det (𝑭0) and 𝑺 are back-rotated 

second Piola-Kirchhoff stresses. 

 

Before writing the virtual variation of the strain components, it is necessary to establish a proper 

parametrization of the rotation tensor. In this work the rotation vector 𝜽 = 𝜽(𝑋3) is employed, 

which is related to the rotation tensor through the well-known Rodrigues formula (see, e.g., 

Goldstein, 1980) 
 

𝚲 = 𝟏 + 𝑎1�̃� + 𝑎2�̃�
2, (15) 
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with the following family of auxiliary functions defined by Ritto-Corrêa & Camotim (2002) 
 

𝑎1 =
sin 𝜃

𝜃
, 𝑎2 =

1 − cos 𝜃

𝜃2
 , 𝑎3 =

𝜃 − sin 𝜃

𝜃3
,

𝑏1 =
𝜃cos 𝜃 − sin 𝜃

𝜃3
, 𝑏2 =

𝜃sin 𝜃 − 2 + 2cos 𝜃

𝜃4
 , 𝑏3 =

−2𝜃 + 3 sin 𝜃 − 𝜃cos 𝜃

𝜃5
, 

(16) 

 

where 𝜃 = ‖𝜽‖. 

 

The independent kinematic parameters defining the current configuration are grouped in vector �̂�, 

as follows 
 

[�̂�]
𝑇

= [�̂�𝑇  �̂�𝑇   �̂�(1)   ⋯  �̂�(𝐷)], (17) 

  

where �̂�(1) = �̂�𝑡. The initial configuration is defined analogously, using the subscript “0”, i.e.,  
 

[�̂�0]
𝑇

= [𝒖0
𝑇  �̂�0

𝑇   𝑝0
(1)

  ⋯  𝑝0
(𝐷)

]. (18) 

 

For the calculation of the virtual work, the following expressions of the virtual variations are 

required 
 

𝛿𝒈2 = ∑𝛿�̂�(𝑖)�̅�,2
(𝑖)

𝐷

𝑖=1

, (19) 

𝛿𝒈3 = 𝛿𝚪 + 𝛿𝑲 × (𝑹𝑇 �̅�) + 𝑲 × (𝑹𝑇𝛿�̅�) + ∑𝛿�̂�,3
(𝑖)�̅�(𝑖)

𝐷

𝑖=1

, (20) 

𝛿�̅� = 𝑹∑𝛿�̂�(𝑖)�̅�(𝑖)

𝐷

𝑖=1

, (21) 

𝛿𝚪 = 𝑹𝑇  𝚵𝐷�̂�𝑇(𝒓0,3 + �̂�,3)𝛿�̂� + (𝚲𝑹)𝑇𝛿�̂�,3, (22) 

𝛿𝑲 = 𝑹𝑇  𝚵𝐷𝑻𝑇(𝜽,3)𝛿�̂� + 𝑹𝑇𝑻𝑇𝛿�̂�,3, (23) 

𝛿𝐸22
𝐵 = −𝑋1 ∑𝛿�̂�(𝑖)�̅�1,22

(𝑖)

𝐷

𝑖=1

, (24) 

𝛿𝐸33
𝐵 = −𝑋1 (𝛿𝐾2 − 𝛿�̂�𝑡,3𝜓𝑡3 + ∑𝛿�̂�,33

(𝑖)
�̅�1

(𝑖)

𝐷

𝑖=2

), (25) 

2𝛿𝐸13
𝐵 = (𝛿�̂�𝑡 − 𝛿𝐾3)𝜓𝑡3, (26) 

2𝛿𝐸23
𝐵 = 𝑋1 (𝛿𝐾3 + 𝛿�̂�𝑡 − 2∑𝛿�̂�,3

(𝑖)
�̅�1,2

(𝑖)

𝐷

𝑖=2

), (27) 

𝛿�̅� = 𝛿�̂� + 𝚵𝐷�̂�(𝚲0�̅�)𝛿�̂� + �̂�𝚲0𝑹∑𝛿�̂�(𝑖)�̅�(𝑖)

𝐷

𝑖=1

. (28) 
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These variations can be written in terms of the independent kinematic parameters using the 

auxiliary operators originally defined by Ritto-Corrêa & Camotim (2002), given by 
 

𝚵𝐷𝚲(𝒂) = −𝑎1�̃� − 𝑎2 (�̃��̃� + �̃��̃�) + 𝑏1(�̃�𝒂⨂𝜽) + 𝑏2(�̃�
2𝒂⨂𝜽),

𝚵𝐷𝚲𝑇(𝒂) = 𝑎1�̃� − 𝑎2 (�̃��̃� + �̃��̃�) − 𝑏1(�̃�𝒂⨂𝜽) + 𝑏2(�̃�
2𝒂⨂𝜽),

𝚵𝐷𝑻𝑇(𝒂) = 𝑎2�̃� − 𝑎3 (�̃��̃� + �̃��̃�) − 𝑏2(�̃�𝒂⨂𝜽) + 𝑏3(�̃�
2𝒂⨂𝜽),

𝑻𝑇 = 𝟏 − 𝑎2�̃� + 𝑎3�̃�
2.  

(29) 

 

The incremental/iterative linearization of the virtual work equation (14), required to obtain the 

tangent stiffness matrix, is given by  
 

∆𝛿𝑊 = − ∫(∆𝛿𝑬𝑇𝑺 + 𝛿𝑬𝑇𝑪𝑡 ∆𝑬)𝐽0𝑑𝑉

𝑉

+ ∆𝛿�̅�𝑇𝑸, (30) 

   

where 𝑪𝑡 is a tangent plane stress constitutive matrix for the particular material adopted, extended 

to include through-thickness shearing. For a St. Vénant-Kirchhoff material law (adopted in all the 

examples presented in Section 3), the relevant stress and strain vectors are 𝑺𝑇 = [𝑆22  𝑆33  𝑆23  𝑆13] 
and 𝑬𝑇 = [𝐸22  𝐸33  2𝐸23  2𝐸13], leading to 
 

𝑪𝑡 = 𝑪 =

[
 
 
 
 
 

𝐸

1 − 𝜈2

𝜈𝐸

1 − 𝜈2
0 0

𝜈𝐸

1 − 𝜈2

𝐸

1 − 𝜈2
0 0

0 0 𝐺 0
0 0 0 𝐺]

 
 
 
 
 

, (31) 

   

where 𝐸 is Young’s modulus, 𝐺 is the shear modulus and 𝜈 is Poisson’s ratio. 

 

The linearization of the virtual work equation (30) can also be written in terms of the independent 

kinematic parameters using the auxiliary operators introduced by Ritto-Corrêa & Camotim (2002) 

and further developed by Gonçalves et al. (2010a). However, the expressions are rather lengthy 

and therefore are not presented in this paper. 

 

The beam finite element is obtained by interpolating all the kinematic parameters in �̂� and 𝝓0 

using Hermite cubic functions. This leads to a two-node element with 2(6 + 𝐷) DOFs per node, 

where D is the number of deformation modes included in the analysis. The first two modes are 

always associated with torsion-related warping, namely secondary (𝑖 = 1) and primary warping 

(𝑖 = 2). The integrations are carried out with Gauss quadrature, using 3 × 3 points along 𝑋3 and 

𝑋2, respectively, in each wall. This corresponds to reduced integration along the length (𝑋3) and 

transverse (𝑋2) directions, to mitigate shear and membrane locking. Along  𝑋1 the integration is 

analytical. The finite element procedure was implemented in MATLAB (2010), including a post-

processing module to visualize the beam configuration. 

 

3. Numerical examples 

All examples presented in this Section concern 90° circular I-section cantilever arches. Although 

the present formulation can handle other initial configurations, this one was chosen since it is 
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significantly easier to model with shell elements (which are used for validation and comparison 

purposes). The built-in end prevents all displacements and rotations, including warping. With the 

proposed element, this boundary condition is enforced by setting 
 

�̂�(0) = �̂�(0) = �̂�(𝑖) = 0, (32) 
 

�̂�,3
(𝑖)(0) = 0, (33) 

   

where Eq. (33) applies only to the modes involving transverse bending, due to Kirchhoff’s 

assumption (e.g., it does not apply to the torsion-related secondary and primary warping modes). 

 

The GBT cross-section deformation modes are obtained using GBTUL 2.06 (Gonçalves et al. 

2010b, 2014; Bebiano et al. 2015, 2018), a freeware program which can be downloaded from 

http://www.civil.ist.utl.pt/gbt/. However, GBTUL generates linear transverse extension modes 

(along 𝑋2 in each wall) and cubic modes along 𝑋1, causing a severe mismatch of the polynomial 

degree of the deformation mode functions which leads to over-stiff solutions in geometrically non-

linear problems. This issue is avoided by introducing quadratic transverse extension modes in each 

wall (Gonçalves & Camotim 2012, Martins et al. 2018). 

 

In all examples, the results obtained with the proposed element are compared with refined four-

node MITC (Mixed Interpolation of Tensorial Components) shell finite element models, analyzed 

using ADINA (Bathe 2019). 

 

3.1 Large displacement analysis 

The first example consists of the 6 m long 90º circular arch displayed in Fig. 2, which is loaded by 

an out-of-plane force applied at the centroid of the free end cross-section, causing coupled flexural-

torsional phenomena (Gonçalves, 2019). This cross-section is quite compact, meaning that cross-

section deformation plays a negligible role. Therefore, this example aims at showing that the 

proposed element handles complex problems involving finite torsional/bending rotations. 

 

The graph in Fig. 2 displays the load-displacement plot obtained (i) with the shell model shown in 

the bottom right of the figure, (ii) six two-node (straight) geometrically exact elements with 

torsion-related warping (Gonçalves 2019) and (iii) the proposed curved formulation, using 6 or 50 

elements and including only the torsion-related warping deformation modes. It is observed that the 

predictive capacity of the proposed element is much higher than that of the two-node (straight) 

beam element. In fact, with the proposed formulation, the results obtained with only 6 elements 

already match very accurately the shell model load-displacement curve up to very large 

displacements. Using 50 elements does not improve the results significantly. 

 

The deformed configurations shown in the bottom of Fig. 2 concern a lateral displacement equal 

to 3 m and were obtained with the proposed beam model (6 elements rendered with four 

subdivisions in each wall — four flanges and one web — and along the length) and the shell model. 

An excellent match is observed, even though the beam undergoes severe bending-torsion 

phenomena with large displacements and finite rotations. 
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Figure 2: 90º circular arch with compact cross-section, subjected to bending-torsion. 
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In the next examples, a slender wide-flange cross-section is selected (see Fig. 3), to trigger local 

deformation. The cross-section discretization employed to obtain the GBT deformation modes is 

displayed at the top of the figure and involves one intermediate node in each wall. Using GBTUL, 

this leads to 33 deformation modes, although those involving cross-section rigid-body motions 

(six modes) must not be included in the present formulation, to avoid linear dependency on �̂� and 

�̂�  — for simplicity, the mode numbering in the figure corresponds to that obtained with GBTUL. 

Recall that, besides the modes shown in the figure, quadratic transverse extension modes in each 

wall (10 modes) and the torsion-related secondary warping mode are also included in the proposed 

formulation, leading to a total of 38 deformation modes.  

 

 

 
 

Figure 3: Most relevant deformation cross-section modes for the slender cross-section. 
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Again, a 6 m long 90º circular I-section arch is analyzed, but the lateral force is now applied at the 

flange free end, which is quite challenging to model with the proposed formulation — the load 

eccentricity is accounted for in the geometric term ∆𝛿�̅�𝑇 in Eq. (30), which is far from trivial when 

considering finite rotations combined with cross-section deformation. 

 

The results are displayed in Fig. 4. The graph plots the evolution of the lateral displacement of the 

point of load application, obtained with (i) the shell model displayed in the bottom right of the 

figure and (ii) the proposed element, using either 20 or 50 equal length elements and several sets 

of deformation modes. These results prompt the following remarks: 

 (i) The proposed formulation with only the torsion-related warping modes departs from the shell 

element results for loads above 1 kN. This demonstrates that cross-section deformation plays 

a significant role starting at this load level. 

 (ii) It is concluded that the present model can capture almost exactly the shell model results by 

considering 50 elements and all deformation modes. Considering either less deformation 

modes (in particular, only the torsion-related and the local-plate modes) and/or finite 

elements does not lead to accurate results. 

 (iii) The deformed configurations shown in the bottom of the figure concern the maximum 

displacement plotted in the graph in Fig. 4 (approximately 1.8 m) and provide further 

evidence of the excellent match obtained between the proposed element and the shell model. 

Note that local buckling near the support is observed in both models and that, due to the 

complex torsion-bending deformation, the point of load application does not undergo the 

highest lateral displacement. 

 

Next, the beam length is reduced to 𝜋 (the axis radius equals 2.0 m), in order to trigger more severe 

local deformation. The corresponding results are shown in Fig. 5. Once again, the graph displays 

the evolution of the point of load application, obtained with (i) the shell model shown in the 

bottom-right of the figure and (ii) the proposed element, using either 20 or 40 equal length elements 

and several sets of deformation modes. These results lead to the following conclusions: 

 (i) The shell deformed configuration displayed in the bottom right of the figure clearly shows 

that cross-section deformation occurs not only at the free end section (where the load is 

applied), but also near the support, as well as torsion-bending. 

 (ii) The proposed formulation with only the torsion-related warping modes fails to capture the 

shell model results, even for very low loads. However, excellent results are obtained if 40 

elements are considered and all deformation modes are included in the analysis. As in the 

previous example, considering either less deformation modes (only the torsion-related and 

the local-plate modes) and/or finite elements leads to inaccurate results. 

 (iii) The deformed configurations displayed in the bottom of the figure concern the maximum 

displacement plotted in the graph in Fig. 5 (those corresponding to the proposed formulation 

were obtained with all deformation modes). It is observed that the deformed configuration 

obtained with 20 finite elements matches rather well the shell model one, but does not 

capture exactly the local deformation occurring near the support. However, with 40 

elements, a virtually perfect match is obtained. 

 



 13 

 
Figure 4: 90º circular arch with slender cross-section. 
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Figure 5: Short 90º circular arch with slender cross-section. 
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3.2 Linear Stability Analysis 

Since the proposed element is geometrically exact, it can be quite easily adapted to perform linear 

stability analyses (LSA) and, thus, calculate bifurcation loads and the associated buckling mode 

shapes. It should be noted that this is a rather significant feature of the proposed formulation, since 

the accuracy of a LSA is highly dependent on the accuracy of the geometrically non-linear terms 

considered. Without a geometrically exact approach, these non-linear terms are not easily derived 

for initially curved members. 

 

According to the LSA concept, the pre-buckling stresses 𝑺 are first calculated on the basis of a 

linear analysis, which only requires the computation of the tangent stiffness matrix of the first 

iteration, 𝑲. This matrix is obtained from the discretized form of (30), resulting in 
 

∆𝛿𝑊(𝑺 = 𝟎, �̂� = 𝟎)  = − ∫ 𝛿𝜺𝑇𝑪𝑡 ∆𝜺 𝐽0𝑑𝑉

𝑉

, (34) 

   

where 𝜺 is the small strain tensor. On the other hand, the geometric stiffness matrix 𝑮 is obtained 

from the discretized form of the initial stress part of (30), which now reads 
 

∆𝛿𝑊𝑔𝑒𝑜(𝑺, �̂� = 𝟎) = −𝜆 ∫ ∆𝛿𝑬𝑇𝑺 𝐽0𝑑𝑉

𝑉

+ ∆𝛿�̅�𝑇𝑸, (35) 

   

where 𝑬 is calculated for �̂� = 𝟎 and 𝜆 is the load factor. 

 

With the previous equations, the standard LSA eigenvalue problem emerges, 
 

(𝑲 + 𝜆𝑮)𝒅 = 𝟎, (36) 
   

where the eigenvalues 𝜆 correspond to the bifurcation loads and the corresponding eigenvectors 𝒅 

define the buckling modes. 

 

Using this approach, the first two bifurcation loads and associated buckling modes are calculated 

for the shorter 90º circular I-section arch of Fig. 5. In this case the loading consists of a downward 

1 kN vertical force, applied at the centroid of the free end cross-section, as shown in Fig. 6. This 

figure displays the results obtained with the proposed formulation, using all modes and 40 equal 

length finite elements (this number of elements was found necessary to obtain convergence of the 

bifurcation loads), and a shell model. Furthermore, Fig. 7 plots the mode amplitude functions, 

along the beam length, for both buckling modes. 

 

The results displayed in Fig. 6 show that the bifurcation load parameters 𝜆 obtained with the 

proposed formulation fall within 5.0% of those provided by the shell model, and that the buckling 

mode shapes are in excellent agreement. These modes are characterized by local deformation near 

the support, with the inward (compressed) flanges exhibiting several half-waves. It should be noted 

that this is a quite complex problem from a numerical point of view, since the two bifurcation 

loads are very close. 
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Concerning the mode amplitude graphs in Fig. 7, it is concluded that the first buckling mode is 

symmetric with respect to the beam axis plane. This mode is essentially characterized by several 

local-plate deformation modes (mostly modes 7, 8 and 5) that exhibit four half waves whose 

amplitudes are higher near the support and decrease towards the free end. Mode 2 is not symmetric 

and is much more complex: 

 (i) The deformation modes exhibiting the highest participations are the local modes 6, 7 and 8. 

Their amplitudes are again higher near the support and “damp out” as one moves towards 

the free end. 

 (ii) Both torsion-related warping modes (primary and secondary) are now present. The 

amplitudes of these modes are somewhat distinct near the support (the secondary warping 

mode exhibits some undulation), but they virtually coincide for 𝑋3/𝐿 > 0.3. 

 (iii) The participation of the 𝑟1 and  𝜃2 parameters is also noteworthy, particularly at the free end. 

This shows that a horizontal displacement occurs due to bending, which is a consequence of 

the lack of symmetry of the buckling mode.  

 

 
 

Figure 6: First two buckling modes of the short 90º circular arch. 
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Figure 7: Deformation mode amplitude functions of the first two buckling modes of the short 90º circular arch. 
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4. Concluding remarks 

This paper presented a new geometrically exact beam formulation that handles naturally curved 

thin-walled members undergoing global-local displacements. In order to describe cross-section 

deformation, Generalized Beam Theory deformation modes are employed, which means that 

Kirchhoff’s thin plate assumption is adopted. However, through-thickness shearing resulting from 

secondary warping torsion is allowed, thus avoiding the calculation of the computationally 

expensive derivative of the torsional curvature (and of its virtual and incremental/iterative 

variations). The finite element implementation of the proposed formulation was obtained by 

interpolating the independent kinematic parameters using Hermite cubic polynomials, resulting in 

an element with 4(6 + 𝐷) DOFs, where 𝐷 is the number of deformation modes (including torsion-

related primary and secondary warping). 

 

The accuracy and efficiency of the proposed finite element was demonstrated through several 

illustrative numerical examples concerning the calculation of (i) deformed configurations 

involving large displacements and finite rotations, combined with cross-section deformation, and 

(ii) bifurcation loads and associated buckling mode shapes (Linear Stability Analysis). For 

validation and comparison purposes, shell finite element model results were provided. It was 

concluded that the proposed element leads to excellent results in spite of the complexity of the 

problems analyzed. 

 

Work is currently under way to include plasticity and develop a mixed finite element. 
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